Abstract

The influence of deposition temperature on the optical properties, microstructure, and residual stress of YbF3 films, deposited by electron-beam evaporation, has been investigated. The increased refractive indices and surface roughness of YbF3 films indicate that the film density and columnar structure size increase with deposition temperature. At the same time, higher packing density reduces absorption of moisture. The residual stress is related to deposition temperature and to substrate. For the samples deposited on BK7, the residual stress mainly comes from intrinsic stress, however, for those on fused silica, thermal stress is the dominant factor of total residual stress.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).
  2. S. Xiong and Y. Zhang, “Optical coatings for deuterium fluoride chemical laser systems,” Appl. Opt. 36, 4958-4961(1997).
    [CrossRef] [PubMed]
  3. M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
    [CrossRef]
  4. F. Lemarquis, G. Marchand, and C. Amra, “Design and manufacture of low-absorption ZnS-YF3 antireflection coatings in the 3.516 μm spectral range,” Appl. Opt. 37, 4239-4244(1998).
    [CrossRef]
  5. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41, 3211-3217(2002).
    [CrossRef] [PubMed]
  6. E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081-2094 (1980).
    [CrossRef]
  7. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
    [CrossRef]
  8. A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
    [CrossRef]
  9. H.-C. Chen, C.-C. Lee, C.-C. Jaing, M.-H. Shiao, C.-J. Lu, and F.-S. Shieu, “Effects of temperature on columnar microstructure and recrystallization of TiO2 film produced by ion-assisted deposition,” Appl. Opt. 45, 1979-1984 (2006).
    [CrossRef] [PubMed]
  10. S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
    [CrossRef]

2006 (2)

2005 (1)

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

2003 (1)

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

2002 (1)

1998 (1)

1997 (2)

A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
[CrossRef]

S. Xiong and Y. Zhang, “Optical coatings for deuterium fluoride chemical laser systems,” Appl. Opt. 36, 4958-4961(1997).
[CrossRef] [PubMed]

1980 (1)

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081-2094 (1980).
[CrossRef]

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Amor, S. Ben

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Amra, C.

Anton, R.

A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
[CrossRef]

Baud, G.

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Chen, H.-C.

Fan, Z.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Filipkowski, M. E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Gatto, A.

Ghedira, M.

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Guedri, L.

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Hach, E. E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).

He, H.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Hirsch, E. H.

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081-2094 (1980).
[CrossRef]

Jacquet, M.

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Jaing, C.-C.

Kaiser, N.

Lee, C.-C.

Lemarquis, F.

Lu, C.-J.

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Marchand, G.

Parra, E.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).

Schnellbügel, A.

A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
[CrossRef]

Selle, B.

A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
[CrossRef]

Shao, J.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Shiao, M.-H.

Shieu, F.-S.

Stickley, C. M.

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).

Thielsch, R.

Tian, G.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Xiong, S.

Zhan, M.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Zhang, Y.

Zhao, Y.

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, and Z. Fan, “Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings,” Appl. Phys. B 80, 1007-1010 (2005).
[CrossRef]

J. Phys. D (1)

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081-2094 (1980).
[CrossRef]

J. Phys. E (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k, and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Mater. Chem. Phys. (1)

S. Ben Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, “Influence of the temperature on the properties of sputtered titanium oxide films,” Mater. Chem. Phys. 77, 903-911 (2003).
[CrossRef]

Mikrochim. Acta (1)

A. Schnellbügel, B. Selle, and R. Anton, “Determination of the stoichiometry and the Yb2+/Yb3+ ratio in YbFx optical IAD films by RBS and in situ XPS analysis,” Mikrochim. Acta 125, 239-243 (1997).
[CrossRef]

Proc. SPIE (1)

C. M. Stickley, M. E. Filipkowski, E. Parra, and E. E. Hach III, “Future of high efficiency diode lasers,” Proc. SPIE 5991, 599110 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmittance spectra of bare silicon substrate and YbF 3 thin films deposited at various substrate temperatures.

Fig. 2
Fig. 2

Change in refractive indices with substrate temperature.

Fig. 3
Fig. 3

Surface morphology of YbF 3 films deposited at various temperatures measured by an AFM. Deposition temperature: (a)  110 ° C , (b)  190 ° C , (c)  240 ° C .

Fig. 4
Fig. 4

Measured total residual stress of YbF 3 films deposited on BK7 versus deposition temperature.

Fig. 5
Fig. 5

Measured stress temperature curve of heating cooling cycle of YbF 3 film deposited at 110 ° C on BK7 substrate.

Fig. 6
Fig. 6

Measured stress temperature curve of YbF 3 films deposited on BK7 and fused silica substrates at 110 ° C .

Fig. 7
Fig. 7

Linear fitting of stress temperature measurement of YbF 3 films deposited at 110 ° C , 160 ° C , and 240 ° C on BK7 substrates.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ tot = σ intr + σ therm + σ ext .
σ therm = ( E f 1 ν f ) ( α film α Sub ) ( T d T a ) ,
σ tot = E d s 2 ( 1 ν ) 6 d f ( 1 R d 1 R 0 ) ,

Metrics