Abstract

The design principle for a nonpolarizing beam splitter based on the Brewster condition in a cube is introduced. Nonpolarizing beam splitters in an asymmetrical glass cube are proposed and theoretically investigated, and applied examples are given. To realize 50% reflectance and 50% transmittance at specified wavelengths for both polarization components with an error of less than 2%, two measurements are taken by adjusting the refractive index of the substrate material and optimizing the thicknesses of each film in the design procedures. The simulated results show that the targets are achieved using the method reported here.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
    [CrossRef] [PubMed]
  2. H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
    [CrossRef]
  3. A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
    [CrossRef] [PubMed]
  4. Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
    [CrossRef] [PubMed]
  5. C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
    [CrossRef] [PubMed]
  6. M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
    [CrossRef] [PubMed]
  7. J. Ciosek, “Non-polarizing beam-splitter inside a glass cube,” Proc. SPIE 2943, 179-183 (1996).
    [CrossRef]
  8. J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
    [CrossRef]
  9. P. Baumeister, Optical Coating Technology (SPIE Press, 2004).
    [CrossRef]
  10. H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343-2348 (2005).
    [CrossRef] [PubMed]
  11. X. Xu, J. Shao, and Z. Fan, “Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl. Opt. 45, 4297-4302 (2006).
    [CrossRef] [PubMed]
  12. W. Wang, S. Xiong, and Y. Zhang, “Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters,” Appl. Opt. 46, 3185-3188 (2007).
    [CrossRef] [PubMed]
  13. Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
    [CrossRef]
  14. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]

2007 (2)

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

W. Wang, S. Xiong, and Y. Zhang, “Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters,” Appl. Opt. 46, 3185-3188 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

P. Baumeister, Optical Coating Technology (SPIE Press, 2004).
[CrossRef]

1999 (1)

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

1996 (2)

1992 (1)

M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
[CrossRef] [PubMed]

1983 (1)

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
[CrossRef] [PubMed]

1982 (1)

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

1976 (1)

A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
[CrossRef] [PubMed]

1974 (1)

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

1970 (1)

V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
[CrossRef] [PubMed]

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE Press, 2004).
[CrossRef]

Ciosek, J.

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

J. Ciosek, “Non-polarizing beam-splitter inside a glass cube,” Proc. SPIE 2943, 179-183 (1996).
[CrossRef]

Clarke, G. A.

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

Costich, V. R.

V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
[CrossRef] [PubMed]

de Sterke, C. M.

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
[CrossRef] [PubMed]

DeBell, G. W.

Dobrowolski, J. A.

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

Fan, Z.

Frankena, H. J.

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
[CrossRef] [PubMed]

Gilo, M.

M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
[CrossRef] [PubMed]

Hong, R.

Houserkova, H.

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

Jiang, H.

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

Knittl, Z.

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

Laframboise, G.

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

Liu, X.

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

Mahlein, H. F.

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Qi, H.

Shao, J.

Thelen, A.

A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
[CrossRef] [PubMed]

Tikhonravov, A. V.

Trubetskov, M. K.

van der Laan, C. J.

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
[CrossRef] [PubMed]

Wang, H.

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

Wang, W.

Wang, Z.

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

Xiong, S.

Xu, X.

Yi, K.

Zhang, Y.

Appl. Opt. (6)

A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
[CrossRef] [PubMed]

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601 (1983).
[CrossRef] [PubMed]

M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
[CrossRef] [PubMed]

V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
[CrossRef] [PubMed]

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

Appl. Opt. (4)

Opt. Acta (1)

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Opt. Laser Technol. (1)

Z. Wang, H. Wang, H. Jiang, and X. Liu, “A magnetic field sensor based on orthoconjugate reflection used for current sensing,” Opt. Laser Technol. 39, 1231-1233 (2007).
[CrossRef]

Proc. SPIE (1)

J. Ciosek, “Non-polarizing beam-splitter inside a glass cube,” Proc. SPIE 2943, 179-183 (1996).
[CrossRef]

Other (1)

P. Baumeister, Optical Coating Technology (SPIE Press, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Effective indices versus the index of refraction for a K9 glass cube ( n 0 = 1.52 ) and θ 0 = 45 .

Fig. 2
Fig. 2

Schematic diagram of the NPBS.

Fig. 3
Fig. 3

(Color online) Reflectance of the NPBS composed of ZnS, A l 2 O 3 , and M g F 2 at θ 0 = 45 .

Fig. 4
Fig. 4

(Color online) Reflectance of the NPBS composed of ZnS, A l 2 O 3 , and M g F 2 at different incident angles.

Fig. 5
Fig. 5

Δ R versus the refractive index of the substrate material.

Fig. 6
Fig. 6

(Color online) Reflectance of the NPBS with n s u b = 1.69 (other parameters are kept constant).

Fig. 7
Fig. 7

(Color online) Reflectance of the NPBS composed of T a 2 O 5 , A l 2 O 3 , and S i O 2 at θ 0 = 45 .

Fig. 8
Fig. 8

(Color online) Reflectance of the optimized NPBS composed of T a 2 O 5 , A l 2 O 3 , and S i O 2 at θ 0 = 45 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n H / cos θ H = n L / cos θ L ,
tan 2 θ H = n L 2 n H 2 .
n 0 / ( n H , n M , n L , n M ) 4 / n s u b .
n 0 / ( 1.125 n H , 1.330 n M , 1.594 n L , 1.330 n M ) 4 / n s u b .
n 0 / ( n L , n M ) , ( n H , n M , n L , n M ) 2 , ( n L , n M ) , ( n H , n M , n L , n M ) 3 / n s u b .
n 0 / 1.572 n 1 , 1.351 n M , 1.138 n H , 1.203 n M , 0.135 n L ,   1.592 n 1 , 0.173 n L , 1.168 n M , 1.136 n H , 1.349 n M , 1.590 n 1 , 1.327 n M , 1.581 n 1 , 1.481 n L , 1.139 n H , 1.351 n M , 1.587 n 1 , 1.309 n M , 1.138 n H , 3.977 n M , 1.129 n H , 2.246 n M , 0.632 n L , 1.905 n M / n s u b ,

Metrics