Abstract

Measurements are described on the experimental filters submitted to the Third Optical Thin Film Manufacturing Problem in which the object was to produce multilayers with a measured colorimetric performance that is as close as possible to that specified. The perceived colors of the coating, when illuminated with randomly polarized light incident at 7° by a source representing average daylight with a correlated color temperature of approximately 6500 K, were to be yellow and blue, respectively, in light reflected from its two surfaces, and the color was to appear white when viewed in transmission mode. Eleven teams from 7 different countries submitted a total of 18 samples.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
    [CrossRef] [PubMed]
  2. J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, "2004 Optical Society of America's Topical Meeting on Optical Interference Coatings: manufacturing problem," Appl. Opt. 45, 1303-1311 (2006).
    [CrossRef] [PubMed]
  3. American Society for Testing and Materials, "Standard practice for computing the colors of objects by using the CIE system," ASTM Publication E308 (ASTM, 2001).
  4. CIE, "Colorimetry," 3rd ed., CIE Publication 15 (CIE, 2004).
  5. F. Goos, "Durchlässigkeit und Reflexionsvermögen dünner Silberschichten von Ultrarot bis Ultraviolett," Z. Physik 100, 95-112 (1936).
    [CrossRef]
  6. H. Pohlack, "Über einige neuere Probleme der Grenzflächenoptik absorbierender Medien," in Optik Aller Wellenlängen, P. Görlich, ed. (Akademie-Verlag, 1959), pp. 369-373.
  7. B. T. Sullivan and K. L. Byrt, "Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results," Appl. Opt. 34, 5684-5694 (1995).
    [CrossRef] [PubMed]
  8. D. Poitras, J. A. Dobrowolski, T. Cassidy, C. Midwinter, and C. T. McElroy, "Black layer coatings for the lithographic manufacture of diffraction gratings," Appl. Opt. 41, 3306-3311 (2002).
    [CrossRef] [PubMed]
  9. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.
  10. M. Tilsch, "Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter," Appl. Opt. 47, C55-C69 (2008).
    [CrossRef] [PubMed]
  11. B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, "High-rate automated deposition system for the manufacture of complex multilayer coatings," Appl. Opt. 39, 157-167 (2000).
    [CrossRef]
  12. B. T. Sullivan and J. A. Dobrowolski, "Implementation of a numerical needle method for thin-film design," Appl. Opt. 35, 5484-5492 (1996).
    [CrossRef] [PubMed]
  13. S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

2008 (1)

2007 (1)

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

2006 (1)

2005 (1)

S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

2004 (1)

CIE, "Colorimetry," 3rd ed., CIE Publication 15 (CIE, 2004).

2002 (2)

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
[CrossRef] [PubMed]

D. Poitras, J. A. Dobrowolski, T. Cassidy, C. Midwinter, and C. T. McElroy, "Black layer coatings for the lithographic manufacture of diffraction gratings," Appl. Opt. 41, 3306-3311 (2002).
[CrossRef] [PubMed]

2001 (1)

American Society for Testing and Materials, "Standard practice for computing the colors of objects by using the CIE system," ASTM Publication E308 (ASTM, 2001).

2000 (1)

1996 (1)

1995 (1)

B. T. Sullivan and K. L. Byrt, "Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results," Appl. Opt. 34, 5684-5694 (1995).
[CrossRef] [PubMed]

1959 (1)

H. Pohlack, "Über einige neuere Probleme der Grenzflächenoptik absorbierender Medien," in Optik Aller Wellenlängen, P. Görlich, ed. (Akademie-Verlag, 1959), pp. 369-373.

1936 (1)

F. Goos, "Durchlässigkeit und Reflexionsvermögen dünner Silberschichten von Ultrarot bis Ultraviolett," Z. Physik 100, 95-112 (1936).
[CrossRef]

Akiyama, T.

Badoil, B.

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

Browning, S.

J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, "2004 Optical Society of America's Topical Meeting on Optical Interference Coatings: manufacturing problem," Appl. Opt. 45, 1303-1311 (2006).
[CrossRef] [PubMed]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
[CrossRef] [PubMed]

Byrt, K. L.

B. T. Sullivan and K. L. Byrt, "Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results," Appl. Opt. 34, 5684-5694 (1995).
[CrossRef] [PubMed]

Cassidy, T.

Cathelinaud, M.

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

Clarke, G.

Dobrowolski, J. A.

Goos, F.

F. Goos, "Durchlässigkeit und Reflexionsvermögen dünner Silberschichten von Ultrarot bis Ultraviolett," Z. Physik 100, 95-112 (1936).
[CrossRef]

Howe, L.

Jacobson, M.

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
[CrossRef] [PubMed]

Jacobson, M. R.

Kikuchi, K.

Lemarchand, F.

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

Lequime, M.

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

Matsumoto, A.

McElroy, C. T.

Midwinter, C.

Nadal, M.

J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, "2004 Optical Society of America's Topical Meeting on Optical Interference Coatings: manufacturing problem," Appl. Opt. 45, 1303-1311 (2006).
[CrossRef] [PubMed]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
[CrossRef] [PubMed]

Osborne, N.

Pohlack, H.

H. Pohlack, "Über einige neuere Probleme der Grenzflächenoptik absorbierender Medien," in Optik Aller Wellenlängen, P. Görlich, ed. (Akademie-Verlag, 1959), pp. 369-373.

Poitras, D.

Ranger, M.

Song, Y.

Sullivan, B. T.

Sullivan, S.

S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

Tilsch, M.

M. Tilsch, "Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter," Appl. Opt. 47, C55-C69 (2008).
[CrossRef] [PubMed]

S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

Van Milligen, F.

S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

Appl. Opt. (2)

B. T. Sullivan and K. L. Byrt, "Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results," Appl. Opt. 34, 5684-5694 (1995).
[CrossRef] [PubMed]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, "Topical meeting on optical interference coatings (OIC' 2001): manufacturing problem," Appl. Opt. 41, 3039-3052 (2002).
[CrossRef] [PubMed]

Appl. Opt. (5)

Photonics Spectra (1)

S. Sullivan, M. Tilsch, and F. Van Milligen, "Bigger is not always better in optical coating production," Photonics Spectra 39(11), 86-92 (2005); see also http://www.jdsu.com/site/jdsu_public_website/assets/pdf/JDSU_Optical_Films_Reprint_Final.pdf.

Z. Physik (1)

F. Goos, "Durchlässigkeit und Reflexionsvermögen dünner Silberschichten von Ultrarot bis Ultraviolett," Z. Physik 100, 95-112 (1936).
[CrossRef]

Other (4)

H. Pohlack, "Über einige neuere Probleme der Grenzflächenoptik absorbierender Medien," in Optik Aller Wellenlängen, P. Görlich, ed. (Akademie-Verlag, 1959), pp. 369-373.

American Society for Testing and Materials, "Standard practice for computing the colors of objects by using the CIE system," ASTM Publication E308 (ASTM, 2001).

CIE, "Colorimetry," 3rd ed., CIE Publication 15 (CIE, 2004).

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "An error compensation strategy for broadband optical monitoring," in Optical Interference Coatings on CD-ROM (Optical Society of America, 2007), presentation WC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Three different numerical solutions to the problem consisting of 4, 10, and 13 layers that are based on the use of Ni, Cr, and Inconel metal layers (rows a, b, c). In column 1 are shown the refractive index profiles of the solutions and in column 2 the calculated spectral transmittance and reflectance curves for unpolarized light incident at 0° and 7° incidence. In this figure, and in Figs. 3, 4, and 6, the reference wavelength for the optical constants is 550 nm.

Fig. 2
Fig. 2

(Color online) Sensitivity of the calculated performance of the systems of Figs. 1(a)–1(c) to random thickness variations: column 1—1% errors; column 2—1 nm errors (see text).

Fig. 3
Fig. 3

(Color online) Effect of the second surface reflection of the substrate on the performance of a single surface solution to the Manufacturing Problem. (a) Refractive index profiles of a 13-layer solution (A), the finite substrate (B), and a 9-layer antireflection coating (C). (b)–(d) Performance of the solution (A) on a semi-infinite substrate and on a finite thickness substrate (B) without and with the antireflection coating.

Fig. 4(a)
Fig. 4(a)

Fig. 4. (Color online) Measurement results. The results for the significantly different solutions submitted by the participants are shown in rows a–o. In column 1 are shown the refractive index profiles of the solutions and in column 2, the measured spectral transmittance and reflectance curves for unpolarized light incident at 7° incidence obtained at NIST and ODA.

Fig. 4(b)
Fig. 4(b)

Fig. 4. (Continued).

Fig. 4(c)
Fig. 4(c)

Fig. 4. (Continued).

Fig. 5
Fig. 5

(Color online) Measured x and y CIE chromaticity coordinates of all 18 samples. Also shown are the chromaticity coordinates of the specified targets.

Fig. 6
Fig. 6

(Color online) Optical constants of the absorbing materials used in the Manufacturing Problem.

Fig. 7
Fig. 7

Photographs of the (a), (b) reflected and (c) transmitted beams of a typical sample. (d) View of all three beams. See the text for more details.

Fig. 8
Fig. 8

Manufacturing Problem team: standing from left to right are Maria Nadal, who unfortunately could not attend the OIC meeting; Michael Jacobson; Stephen Browning; and George Dobrowolski.

Tables (5)

Tables Icon

Table 1 Definition of the Target Performance

Tables Icon

Table 2 Target and Calculated Colorimetric Performance of Three Different Numerical Solutions

Tables Icon

Table 3 Participants Listed in Alphabetical Order of the Principal Investigator's Name

Tables Icon

Table 4 Target and Measured Average Colorimetric Performance of the 15 Significantly Different Samples

Tables Icon

Table 5 Information on the Layer Systems of the 15 Significantly Different Samples, Their Calculated and Measured Merit Function Values, and Their Ranking

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

MF = { 1 9 [ m = 1 3 ( x m T x m 0.01 x m T ) 2 + m = 1 3 ( y m T y m 0.01 y m T ) 2 + m = 1 3 ( Y m T Y m 0.01 Y m T ) 2 ] } 1 / 2  .
x m = X m / ( X m + Y m + Z m ) y m = Y m / ( X m + Y m + Z m ) ,
X m = k λ L λ U x ¯ ( λ ) S ( λ ) q m ( λ ) d λ ,
Y m = k λ L λ U y ¯ ( λ ) S ( λ ) q m ( λ ) d λ ,
Z m = k λ L λ U z ¯ ( λ ) S ( λ ) q m ( λ ) d λ ,
k = 100 / λ L λ U y ¯ ( λ ) S ( λ ) d λ ,

Metrics