Abstract

Electric-field modeling provides insight into the laser damage resistance potential of nodular defects. The laser-induced damage threshold for high-reflector coatings is 13× lower at the third harmonic (351nm) than at the first harmonic (1053nm) wavelength. Linear and multiphoton absorption increases with decreasing wavelength, leading to a lower-third harmonic laser resistance. Electric-field effects can also be a contributing mechanism to the lower laser resistance with decreasing wavelength. For suitably large inclusions, the nodule behaves as a microlens. The diffraction-limited spot size decreases with wavelength, resulting in an increase in intensity. Comparison of electric-field finite-element simulations illustrates a 3× to 16× greater light intensification at the shorter wavelength.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. DeFord and M. R. Kozlowski, "Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993).
  2. R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).
  3. M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).
  4. C. J. Stolz, M. D. Feit, and T. V. Pistor, "Laser intensification by spherical inclusions embedded within multilayer coatings," Appl. Opt. 45, 1594-1601 (2006).
    [CrossRef] [PubMed]
  5. J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).
  6. C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).
  7. Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
    [CrossRef]
  8. A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).
  9. T. Pistor, "Electromagnetic simulation and modeling with applications in lithography," Ph.D. dissertation (University of California at Berkeley, 2001).
  10. W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).
  11. R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
    [CrossRef]
  12. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).
  13. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).
  14. M. Göppert-Mayer, "Uber Elementarakte mit zwei Quantensprungen," Ann. Phys. 9, 273-295 (1931).
    [CrossRef]
  15. T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
    [CrossRef]

2007 (1)

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

2006 (2)

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

C. J. Stolz, M. D. Feit, and T. V. Pistor, "Laser intensification by spherical inclusions embedded within multilayer coatings," Appl. Opt. 45, 1594-1601 (2006).
[CrossRef] [PubMed]

2004 (1)

C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).

2001 (1)

T. Pistor, "Electromagnetic simulation and modeling with applications in lithography," Ph.D. dissertation (University of California at Berkeley, 2001).

1999 (1)

J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).

1996 (2)

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

1995 (1)

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).

1994 (2)

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

1993 (1)

J. F. DeFord and M. R. Kozlowski, "Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993).

1981 (1)

T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
[CrossRef]

1980 (1)

W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).

1931 (1)

M. Göppert-Mayer, "Uber Elementarakte mit zwei Quantensprungen," Ann. Phys. 9, 273-295 (1931).
[CrossRef]

Bodemann, A.

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

Borden, M. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Chen, W.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Chow, R.

R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

DeFord, J. F.

J. F. DeFord and M. R. Kozlowski, "Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993).

Dijon, J.

J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).

Feit, M. D.

Folta, J. A.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Fornier, A.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

Génin, F. Y.

C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).

Göppert-Mayer, M.

M. Göppert-Mayer, "Uber Elementarakte mit zwei Quantensprungen," Ann. Phys. 9, 273-295 (1931).
[CrossRef]

Griffin, A. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Gu, P.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Guernther, A. H.

T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
[CrossRef]

Hue, J.

J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).

Kaiser, N.

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

Kozlowski, M. R.

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

J. F. DeFord and M. R. Kozlowski, "Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993).

Liu, X.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).

Milam, D.

W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).

Nielsen, P.

T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
[CrossRef]

Pierce, E.

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

Pistor, T.

T. Pistor, "Electromagnetic simulation and modeling with applications in lithography," Ph.D. dissertation (University of California at Berkeley, 2001).

Pistor, T. V.

C. J. Stolz, M. D. Feit, and T. V. Pistor, "Laser intensification by spherical inclusions embedded within multilayer coatings," Appl. Opt. 45, 1594-1601 (2006).
[CrossRef] [PubMed]

C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).

Poulingue, M.

J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).

Rainer, F.

W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).

Sawicki, R. H.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).

Shang, C. C.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).

Sheehan, L.

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

Stolz, C. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

C. J. Stolz, M. D. Feit, and T. V. Pistor, "Laser intensification by spherical inclusions embedded within multilayer coatings," Appl. Opt. 45, 1594-1601 (2006).
[CrossRef] [PubMed]

C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

Swatloski, T. L.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).

Taylor, J. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Tench, R. J.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

Thomas, M. D.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Walker, T. W.

T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
[CrossRef]

Wang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Wolfe, J. E.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

Zhang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Ann. Phys. (1)

M. Göppert-Mayer, "Uber Elementarakte mit zwei Quantensprungen," Ann. Phys. 9, 273-295 (1931).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. W. Walker, A. H. Guernther, and P. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings-Pt. I: Experimental & Pt. II: Theory," IEEE J. Quantum Electron. QE-17, 2041-2065 (1981).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. J. Tench, R. Chow, and M. R. Kozlowski, "Characterization of defect geometries in multilayer optical coatings," J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

Opt. Commun. (1)

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, "Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings," Opt. Commun. 278, 317-320 (2007).
[CrossRef]

Other (10)

A. Bodemann, N. Kaiser, M. R. Kozlowski, E. Pierce, and C. J. Stolz, "Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 395-404 (1996).

T. Pistor, "Electromagnetic simulation and modeling with applications in lithography," Ph.D. dissertation (University of California at Berkeley, 2001).

W. H. Lowdermilk, D. Milam, and F. Rainer, "Damage to coatings and surfaces by 1.06 μm pulses," in Laser-Induced Damage in Optical Materials: 1979, H. E. Bennett, A. J. Glass, A. H. Guenther, and B. E. Newnam, eds., NIST Spec. Publ. 568, 391-403 (1980).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, "A comparison of nodular defect seed geometries from different deposition techniques," in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M.J.Soileau, eds., Proc. SPIE 2714, 74-382 (1996).

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, "Improved method for laser damage testing coated optics," in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5991, 59912A-1-59912A-8 (2006).

J. Dijon, M. Poulingue, and J. Hue, "Thermomechanical model of mirror laser damage at 1.06 μm. Pt. 1: nodule ejection," in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M.J.Soileau, eds., Proc. SPIE 3578, 387-396 (1999).

C. J. Stolz, F. Y. Génin, and T. V. Pistor, "Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence," in Laser-Induced Damage in Optical Materials: 2003, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 5273, 41-49 (2004).

J. F. DeFord and M. R. Kozlowski, "Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings," in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993).

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, "Failure characterization of nodular defects in multi-layer dielectric coatings," in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995).

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, "Influence of defect shape on laser-induced damage in multiplayer coatings," in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral and damage threshold characteristics of modeled coating.

Fig. 2
Fig. 2

Typical defect geometry used for electric-field calculations. Note the higher density of cells required at 351 nm.

Fig. 3
Fig. 3

Light intensification of a deeply embedded inclusion (24 layers) as a function of spherical inclusion diameter, incidence angle, and polarization (left figure) and as a function of incident angle and polarization for a constant spherical inclusion diameter of 1.0 μ m (right figure).

Fig. 4
Fig. 4

(Color online) Light intensification simulations of a coating nodule with a 1 μ m diameter inclusion as a function of wavelength, incident angle, and polarization.

Tables (2)

Tables Icon

Table 1 Light Intensification for a Deeply Embedded Inclusion for Different Geometries and Incident Angles

Tables Icon

Table 2 Light Intensification for a Deeply Embedded Spherical Inclusion for Different Wavelengths and Incident Angles

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D = 8 d 2 t d .
C = D 2 h t ,
C = 8 d 2 d 2 .

Metrics