Abstract

A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering. The laser damage thresholds of these coatings are determined at 1064 and 355nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
    [CrossRef] [PubMed]
  2. C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).
  3. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
    [CrossRef]
  4. P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
    [CrossRef]
  5. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
    [CrossRef]
  6. A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
    [CrossRef] [PubMed]
  7. H. L. Pulker and M. Reinhold, "Reactive ion plating of optical films," Int. J. Glass Sci. Technol. 62, 100-105 (1989).
  8. M. R. Kozlowski, "Damage-resistant laser coatings," in Thin Films for Optical Systems, F. Flory, ed. (Marcel Dekker, 1995), pp. 521-549.
  9. C. J. Stolz and F. Y. Génin, "Laser resistant coatings," in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 309-333.
  10. L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
    [CrossRef]
  11. D. Milam, W. H. Lowdermilk, F. Rainer, J. E. Swain, C. K. Carniglia, and T. Tuttle Hart, "Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings," Appl. Opt. 21, 3689-3694 (1982).
    [CrossRef] [PubMed]
  12. H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
    [CrossRef]
  13. M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
    [CrossRef]
  14. D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
    [CrossRef]
  15. M. Commandré and P. Roche, "Characterization of optical coatings by photothermal deflection," Appl. Opt. 35, 5021-5034 (1996).
    [CrossRef] [PubMed]
  16. A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
    [CrossRef] [PubMed]
  17. L. Gallais and M. Commandré, "Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces," Appl. Opt. 45, 1416-1424 (2006).
    [CrossRef] [PubMed]
  18. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, 1986).
    [CrossRef]
  19. ISO Standard 11254-1, "Determination of laser-damage threshold of optical surfaces. Pt. 1: 1-on-1 test" (International Organization for Standardization, 2000).

2007

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

2006

L. Gallais and M. Commandré, "Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces," Appl. Opt. 45, 1416-1424 (2006).
[CrossRef] [PubMed]

2004

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

2003

C. J. Stolz and F. Y. Génin, "Laser resistant coatings," in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 309-333.

2002

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
[CrossRef] [PubMed]

2000

P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
[CrossRef]

ISO Standard 11254-1, "Determination of laser-damage threshold of optical surfaces. Pt. 1: 1-on-1 test" (International Organization for Standardization, 2000).

1999

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

1996

1995

M. R. Kozlowski, "Damage-resistant laser coatings," in Thin Films for Optical Systems, F. Flory, ed. (Marcel Dekker, 1995), pp. 521-549.

1993

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

1990

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

1989

H. L. Pulker and M. Reinhold, "Reactive ion plating of optical films," Int. J. Glass Sci. Technol. 62, 100-105 (1989).

1986

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, 1986).
[CrossRef]

1982

Alvisi, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Amra, C.

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

André, P.

P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
[CrossRef]

Bevis, R. P.

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

Carniglia, C. K.

Cathelinaud, M.

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

Chow, R.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

Commandré, M.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

L. Gallais and M. Commandré, "Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces," Appl. Opt. 45, 1416-1424 (2006).
[CrossRef] [PubMed]

A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
[CrossRef] [PubMed]

M. Commandré and P. Roche, "Characterization of optical coatings by photothermal deflection," Appl. Opt. 35, 5021-5034 (1996).
[CrossRef] [PubMed]

Cousin, B.

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

Di Giulio, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Dobrowolski, J. A.

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

During, A.

A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
[CrossRef] [PubMed]

Falabella, S.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

Fossati, C.

A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
[CrossRef] [PubMed]

Gallais, L.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

L. Gallais and M. Commandré, "Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces," Appl. Opt. 45, 1416-1424 (2006).
[CrossRef] [PubMed]

Gatto, A.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Génin, F. Y.

C. J. Stolz and F. Y. Génin, "Laser resistant coatings," in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 309-333.

Grézes-Besset, C.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

Gunten, M. K.

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

Heber, J.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Kaiser, N.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Kometai, T. Y.

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

Kozlowski, M. R.

M. R. Kozlowski, "Damage-resistant laser coatings," in Thin Films for Optical Systems, F. Flory, ed. (Marcel Dekker, 1995), pp. 521-549.

Krol, H.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

Lagier, G.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

Lemarquis, F.

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

Lequime, M.

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

Loesel, J.

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

Loomis, G. E.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

Lowdermilk, W. H.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, 1986).
[CrossRef]

Marrone, S. G.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Milam, D.

Nash, D. L.

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

Nassau, K.

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

Natoli, J. Y.

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

Perrone, M. R.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Plante, L. M.

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

Poupinet, L.

P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
[CrossRef]

Protopapa, M. L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Pulker, H. L.

H. L. Pulker and M. Reinhold, "Reactive ion plating of optical films," Int. J. Glass Sci. Technol. 62, 100-105 (1989).

Rainer, F.

Ravel, G.

P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
[CrossRef]

Reinhold, M.

H. L. Pulker and M. Reinhold, "Reactive ion plating of optical films," Int. J. Glass Sci. Technol. 62, 100-105 (1989).

Roche, P.

Roussel, L.

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

Smith, D.

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

Stolz, C. J.

C. J. Stolz and F. Y. Génin, "Laser resistant coatings," in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 309-333.

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

Sullivan, B. T.

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

Swain, J. E.

Thielsch, R.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Torricini, D.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

Tuttle Hart, T.

Valentini, A.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Vasanelli, L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

Waldorf, A. J.

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

Wood, D. L.

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

Appl. Opt.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, and C. J. Stolz, "Reactive evaporation of low defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
[CrossRef] [PubMed]

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, "Optical coatings deposited by reactive ion plating," Appl. Opt. 32, 5583-5593 (1993).
[CrossRef] [PubMed]

D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, "Optical properties of cubic hafnia stabilized with yttrium," Appl. Opt. 21, 604-607 (1990).
[CrossRef]

A. During, C. Fossati, and M. Commandré, "Multiwavelength imaging of defects in ultraviolet optical materials," Appl. Opt. 41, 3118-3126 (2002).
[CrossRef] [PubMed]

L. Gallais and M. Commandré, "Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces," Appl. Opt. 45, 1416-1424 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Int. J. Glass Sci. Technol.

H. L. Pulker and M. Reinhold, "Reactive ion plating of optical films," Int. J. Glass Sci. Technol. 62, 100-105 (1989).

J. Vac. Sci. Technol.

P. André, L. Poupinet, and G. Ravel, "Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications," J. Vac. Sci. Technol. 18, 2372-2377 (2000).
[CrossRef]

Opt. Eng.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, "Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm," Opt. Eng. 46, 023402 (2007).
[CrossRef]

Proc. SPIE

M. Cathelinaud, F. Lemarquis, J. Loesel, and B. Cousin, "Metal-dielectric light absorbers manufactured by ion plating," Proc. SPIE 5250, 511-518 (2004).
[CrossRef]

C. J. Stolz, L. M. Sheehan, M. K. Gunten, R. P. Bevis, and D. Smith, "The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition," Proc. SPIE 3338, 218-324 (1999).

Thin Solid Films

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, "HfO2 films with high laser damage threshold," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, "A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition, and plasma ion-assisted deposition," Thin Solid Films 410, 86-93 (2002).
[CrossRef]

L. Gallais, H. Krol, J. Y. Natoli, M. Commandré, M. Cathelinaud, L. Roussel, M. Lequime, and C. Amra, "Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering," Thin Solid Films 515, 3830-3836 (2007).
[CrossRef]

Other

M. R. Kozlowski, "Damage-resistant laser coatings," in Thin Films for Optical Systems, F. Flory, ed. (Marcel Dekker, 1995), pp. 521-549.

C. J. Stolz and F. Y. Génin, "Laser resistant coatings," in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 309-333.

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, 1986).
[CrossRef]

ISO Standard 11254-1, "Determination of laser-damage threshold of optical surfaces. Pt. 1: 1-on-1 test" (International Organization for Standardization, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Refractive index dispersion curves.

Fig. 2
Fig. 2

Refractive index of H f O 2 films made with different techniques.

Fig. 3
Fig. 3

Extinction coefficient of H f O 2 films made with different techniques.

Fig. 4
Fig. 4

Roughness of the different samples.

Fig. 5
Fig. 5

Experimental setup for laser damage measurements: M, mirror; W, wave plate; P, Glan-laser polarizer; BS, tilted wedge window; Py, pyrometer; NDs, neutral density filters; L, focusing lens; S, sample; BD, beam dump; IS, imaging system.

Fig. 6
Fig. 6

Laser damage probability curves measured for the different technologies at 355 n m (one-on-one test, 11 ns, 3 μ m spot size). Tested samples: DIBS 2H at 355 nm, RLVIP 2H at 355 nm, EBD-Hf 2H at 355 nm, and EBD- H f O 2 2H at 355 nm. LIDT of the substrate in the same conditions is 18 J∕cm2.

Fig. 7
Fig. 7

Laser damage probability curves measured for the different technologies at 1064 n m (one-on-one test, 11 ns, 3 μ m spot size). Tested samples: DIBS 2H at 1064 nm, RLVIP 2H at 1064 nm, EBD-Hf 2H at 1064 nm, and EBD- H f O 2 2H at 1064 nm. LIDT of the substrate in the same conditions is 83 J∕cm2.

Fig. 8
Fig. 8

Laser damage probability curves measured for the substrate.

Fig. 9
Fig. 9

Standing-wave electric field distribution in the samples. Refractive indices are obtained from Subsection 3A, and optical thickness is (a) λ / 2 at 355 n m and (b) λ / 2 at 1064 n m .

Tables (2)

Tables Icon

Table 2 Process Parameters

Equations (122)

Equations on this page are rendered with MathJax. Learn more.

H f O 2
355 n m
H f O 2
H f O 2
H f O 2
H f O 2
1064 n m
1064 n m
1064 n m
355 n m
355 n m
λ / 2
355 n m
λ / 2
1064 n m
1064 n m
λ / 2
1064 n m
H f O 2
10 3
10 4 10 7
333.6 363.8 n m
1500 H z
15 μ m
1 / e 2
10 7
A = 4 π k λ n n 0 0 e | E ( z ) E i n c | 2 d z ,
n 0
E ( z )
E i n c
80 μ m × 80 μ m
λ / 2
355 n m
11 n s
1 / e
355 n m
1064 n m
355 n m
1064 n m
f = 35 m m
355 n m
f = 11.5 m m
44 μ m
1064 n m
3 μ m
355 n m
1 / e
216 ×
355 n m
1064 n m
H f O 2
2.1 J / c m 2
355 n m
14.5 J / c m 2
1064 n m
2.8 J / c m 2
355 n m
3.5 J / c m 2
1064 n m
2.3 J / c m 2
355 n m
15.5 J / c m 2
1064 n m
0.22 J / c m 2
355 n m
12 J / c m 2
1064 n m
18 J / c m 2
355 n m
83 J / c m 2
1064 n m
1064 n m
1064 n m
355 n m
355 n m
355 n m
H f O 2
1064 n m
1064 n m
1064 n m
1064 n m
S i O / H f O 2
H f O 2
H f O 2
H f O 2
1064 n m
λ / 2
λ / 2
λ / 2
λ / 2
λ / 2
λ / 2
H f O 2
λ / 2
H f O 2
λ / 2
H f O 2
H f O 2
3 × 10 7
3 × 10 7
3 × 10 7
7 × 10 7
5 × 10 4
5 × 10 4
6 × 10 4
5.5 × 10 4
O 2
O 2
A r + O 2
A r + O 2
H f O 2
H f O 2
355 n m
3 μ m
H f O 2
1064 n m
3 μ m
H f O 2
λ / 2
355 n m
λ / 2
1064 n m

Metrics