Abstract

We propose and demonstrate three approaches to achieve narrowband multichannel filters. These are multiple heterostructures with defects, guided-mode resonance (GMR) Brewster filters with multiple channels, and integrated narrow bandpass filter arrays. Transmission studies for multiple heterostructures with defects are presented. We show that the enlargement of the forbidden band and multiple-channel filtering can be reached simultaneously with these configurations. GMR Brewster filters with multiple channels can be obtained with a single-layer grating. The same properties can be obtained by use of double-layer structures that consist of a homogeneous layer and a grating with equal refractive index. We developed a combinatorial etching technique that has 32 elements on a single substrate with which to fabricate integrated narrow bandpass filters. Single- and double-chamber integrated optical filter arrays were fabricated by use of this etching technique. These narrowband multichannel filters and narrow bandpass filter arrays show good filtering features and can be utilized in many optical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium, and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).
    [CrossRef]
  2. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
    [CrossRef]
  3. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  4. M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems," J. Lightwave Technol. 12, 226-230 (1994).
    [CrossRef]
  5. D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36(12), 50-55 (1998).
    [CrossRef]
  6. L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
    [CrossRef]
  7. Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
    [CrossRef]
  8. Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).
  9. Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).
  10. T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
    [CrossRef] [PubMed]
  11. S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
    [CrossRef] [PubMed]
  12. S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
    [CrossRef]
  13. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, "Concept of a high-resolution miniature spectrometer using an integrated filter array," Opt. Lett. 32, 632-634 (2007).
    [CrossRef] [PubMed]
  14. H. Jiao, Y. Wu, G. Tian, S.-W. Wang, H. Cao, L. Zhang, and L. Fu, "Two-chamber integrated multichannel narrowband filter prepared by a multistep etching method," Appl. Opt. 46, 867-871 (2007).
    [CrossRef] [PubMed]
  15. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  16. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  17. H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
    [CrossRef]
  18. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
    [CrossRef]
  19. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  20. R. Magnusson, D. Shin, and Z. S. Liu, "Guided-mode resonance Brewster filter," Opt. Lett. 23, 612-614 (1998).
    [CrossRef]
  21. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
    [CrossRef]
  22. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  23. M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
    [CrossRef]
  24. M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
    [CrossRef]
  25. T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
    [CrossRef]
  26. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, "Multispectral imaging using compact compound optics," Opt. Express 12, 1643-1655 (2004).
    [CrossRef] [PubMed]
  27. G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

2007 (3)

2006 (4)

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

2005 (1)

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

2004 (3)

R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, "Multispectral imaging using compact compound optics," Opt. Express 12, 1643-1655 (2004).
[CrossRef] [PubMed]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

2001 (2)

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

2000 (2)

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

1999 (1)

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

1998 (2)

D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36(12), 50-55 (1998).
[CrossRef]

R. Magnusson, D. Shin, and Z. S. Liu, "Guided-mode resonance Brewster filter," Opt. Lett. 23, 612-614 (1998).
[CrossRef]

1997 (1)

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

1995 (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

1994 (1)

M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems," J. Lightwave Technol. 12, 226-230 (1994).
[CrossRef]

1992 (1)

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1987 (3)

J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium, and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).
[CrossRef]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1985 (1)

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
[CrossRef]

1956 (1)

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Adibi, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

Amano, T.

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

Arens-Fischer, R.

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

Boimovich, E.

D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36(12), 50-55 (1998).
[CrossRef]

Buss, W.

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

Cao, H.

Chen, H.

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

Chen, L.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Chen, X.

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, "Concept of a high-resolution miniature spectrometer using an integrated filter array," Opt. Lett. 32, 632-634 (2007).
[CrossRef] [PubMed]

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Frank, M.

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

Fu, L.

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
[CrossRef]

Gu, G.

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

Iga, K.

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

Jiao, H.

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kaiser, N.

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

Kitamura, Y.

Koyama, F.

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems," J. Lightwave Technol. 12, 226-230 (1994).
[CrossRef]

Lee, R. K.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

Li, H.

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

Li, M.

Lin, B.

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

Lin, X.

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Liu, D.

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

Liu, Z. S.

Lu, W.

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, "Concept of a high-resolution miniature spectrometer using an integrated filter array," Opt. Lett. 32, 632-634 (2007).
[CrossRef] [PubMed]

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Lüth, H.

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Magnusson, R.

R. Magnusson, D. Shin, and Z. S. Liu, "Guided-mode resonance Brewster filter," Opt. Lett. 23, 612-614 (1998).
[CrossRef]

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Marso, M.

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

Miyatake, S.

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
[CrossRef]

Nishiyama, N.

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

Qi, T.

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Rytov, S. M.

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Sadot, D.

D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36(12), 50-55 (1998).
[CrossRef]

Sang, T.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

Schallenberg, U. B.

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

Scherer, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

Shin, D.

Shogenji, R.

Stone, J.

J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium, and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).
[CrossRef]

Stulz, L. W.

J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium, and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

Tanida, J.

Tian, G.

H. Jiao, Y. Wu, G. Tian, S.-W. Wang, H. Cao, L. Zhang, and L. Fu, "Two-chamber integrated multichannel narrowband filter prepared by a multistep etching method," Appl. Opt. 46, 867-871 (2007).
[CrossRef] [PubMed]

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

Wang, H.

Wang, L.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Wang, S.-W.

Wang, Y.

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Wang, Z.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

Wolter, M.

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

Wu, Y.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

H. Jiao, Y. Wu, G. Tian, S.-W. Wang, H. Cao, L. Zhang, and L. Fu, "Two-chamber integrated multichannel narrowband filter prepared by a multistep etching method," Appl. Opt. 46, 867-871 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

S.-W. Wang, X. Chen, W. Lu, L. Wang, Y. Wu, and Z. Wang, "Integrated optical filter arrays fabricated by using the combinatorial etching technique," Opt. Lett. 31, 332-334 (2006).
[CrossRef] [PubMed]

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

Xia, C.

Xu, Y.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

Yariv, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

Zhang, L.

Zhang, T.

Zheng, W.

Zhu, J.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index," Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Zhu, S.

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

Acta Opt. Sin. (1)

G. Tian, Y. Wu, Z. Wang, X. Lin, Y. Wang, T. Qi, and L. Chen, "Design and modification of double channel of one dimensional photonic crystal," Acta Opt. Sin. 25, 661-663 (2005), in Chinese.

Appl. Opt. (1)

Appl. Phys. B (1)

S.-W. Wang, D. Liu, B. Lin, X. Chen, and W. Lu, "16 × 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique," Appl. Phys. B 82, 637-641 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

H. Li, G. Gu, H. Chen, and S. Zhu, "Disordered dielectric high reflectors with broadband from visible to infrared," Appl. Phys. Lett. 74, 3260-3262 (1999).
[CrossRef]

R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, and W. Lu, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, "Guided-mode resonance Brewster filters with multiple channels," Appl. Phys. Lett. 88, 251115 (2006).

Z. Wang, T. Sang, J. Zhu, L. Wang, Y. Wu, and L. Chen, "Double-layer resonant Brewster filters consisting of a homogeneous layer and a grating with equal refractive index," Appl. Phys. Lett. 89, 241119 (2006).

Electron. Lett. (2)

J. Stone and L. W. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium, and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36(12), 50-55 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, "Wide-band Fabry-Perot-like filters in optical fiber," IEEE Photon. Technol. Lett. 7, 78-80 (1995).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, Z. Wang, Y. Wu, L. Chen, S.-W. Wang, X. Chen, and W. Lu, "Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures," J. Appl. Phys. 95, 424-426 (2004).
[CrossRef]

J. Lightwave Technol. (1)

M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems," J. Lightwave Technol. 12, 226-230 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Amano, F. Koyama, N. Nishiyama, and K. Iga, "2 × 2 multiwavelength micromachined AlGaAs/GaAs vertical cavity filter array with wavelength control layer," Jpn. J. Appl. Phys. 39, 673-674 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985).
[CrossRef]

Proc. SPIE (1)

M. Frank, U. B. Schallenberg, N. Kaiser, and W. Buss, "Dielectric microfilter arrays for multispectral measuring devices," Proc. SPIE 3008, 265-272 (1997).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Thin Solid Films (1)

M. Marso, M. Wolter, R. Arens-Fischer, and H. Lüth, "Fabrication of laterally displaced porous silicon filters," Thin Solid Films 382, 218-221 (2001).
[CrossRef]

Other (1)

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the calculated heterostructures. A, B, and C are three different one-dimensional PCs with different thicknesses, respectively. D is a defect.

Fig. 2
Fig. 2

Calculated transmission spectra for (a) ( 1H1L ) 4 ( 1 H ) 4 ( 1 L 1 H ) 4 , (b) A D 1 B C and the measured transmission spectrum, (c) A D 1 B C .

Fig. 3
Fig. 3

Calculated transmission spectra for (a) ( 1H1L ) 4 ( 1 H ) 7 ( 1L1H ) 4 , (b) A D 2 B D 3 C and the measured transmission spectrum, (c) A D 2 B D 3 C .

Fig. 4
Fig. 4

Angular response of a single-layer resonant Brewster filter for a TM-polarized incident wave at 600.00   nm wavelength. The parameters are n c = 1 , n 1 H = 2.02 , n 1 L = n s = 1.46 , f = 0.5 , Λ = 257.07   nm , d = 150.00   nm .

Fig. 5
Fig. 5

Calculated reflectance as a function of the grating depth with an incident angle of 59.93°; other parameters are the same as in Fig. 4.

Fig. 6
Fig. 6

Calculated reflectance as a function of wavelength; the incident angle is 59.93°. Parameters are the same as in Fig. 4 with the exceptions that (a) d = 150.00   nm , (b) d = 466.60   nm , (c) d = 783.50   nm .

Fig. 7
Fig. 7

Angular response of a double-layer resonant Brewster filter consisting of a homogeneous layer with a refractive index equal to that of the grating for an incident TM-polarized wave at 600   nm wavelength. The parameters are n c = 1.0 , n 1 H = 1.98 , n 1 L = n s = 1.45 , n 2 = n eff = 1.65 , f = 0.5 , d g = 100   nm , d = 50   nm , and Λ = 258.3   nm .

Fig. 8
Fig. 8

Reflection d g λ two-dimensional map of the filter in Fig. 7. The incident angle is 59.79°, and the other parameters are the same as in Fig. 7, except that the total thickness ( d g + d l ) is kept constant at 150   nm .

Fig. 9
Fig. 9

Spectral response of the filter in Fig. 7 for a TM-polarized wave incident at the Brewster angle of 59.79°: (a) single channel, d g = 100   nm and d l = 50   nm ; (b) double channels, d g = 100   nm and d l = 431   nm ; (c) triple channels, d g = 100   nm and d l = 812   nm .

Fig. 10
Fig. 10

Diagram of the procedure for fabrication of a filter array by use of combinatorial etching.

Fig. 11
Fig. 11

(Color online) Experimental transmittance spectra of each element on the 32 × 1 filter array with an element size of 0 .37   mm × 12   mm . The filter array has an ( LH ) 10 x L ( HL ) 10 structure, where H and L represent one quarter-wave optical thickness at a wavelength of 777.4   nm . Ta 2 O 5 and SiO 2 are high and low refractive-index material with refractive indices of 2.11 and 1.48, respectively. The spacer layer is transferred to a 32 × 1 spacer array with the thickness discretely distributed in the 4.4 L–3.95 L range by running the etching process.

Fig. 12
Fig. 12

(Color online) Flow chart of the preparation of the two-chamber integrated narrowband filter: (a) deposition of the first spacer layer, (b) etching the first spacer layer, (c) second deposition, (d) deposition of the second spacer layer, (e) etching the second spacer layer, (f) deposition of the residual film.

Fig. 13
Fig. 13

(Color online) Transmittance spectra of each element on the 32 × 1 filter array.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = { n 1 H 2 n 1 L 2 / [ f n 1 L 2 + ( 1 f ) n 1 H 2 ] } 1 / 2 ,

Metrics