Abstract

A description is given of the methodology based on a single, aircraft-mounted spectroscopic imager to tomographically reconstruct airglow perturbations induced by atmospheric gravity waves. In this configuration, the imager passes under the airglow structure to gather multiple-angle views of the wave structure in a relatively short amount of time. Under the assumption that the airglow structure does not change significantly during the acquisition interval, the data can be tomographically inverted to estimate the 2D (horizontal–vertical) airglow structure. We develop an inversion strategy for this image formation task and illustrate its applicability by inverting time-sequential imaging data taken from different vantage points during the ALOHA-93 campaign to reconstruct atmospheric gravity wave structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441-1481 (1960).
    [CrossRef]
  2. J. R. Holton, “The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere,” J. Atmos. Sci. 39, 791-799 (1982).
    [CrossRef]
  3. R. A. Vincent, “Gravity-wave motions in the mesosphere,” J. Atmos. Terr. Phys. 46, 119-128 (1984).
    [CrossRef]
  4. A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003)..
    [CrossRef]
  5. G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
    [CrossRef]
  6. M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
    [CrossRef]
  7. J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
    [CrossRef]
  8. G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998).
    [CrossRef]
  9. F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
    [CrossRef]
  10. J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.
  11. J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
    [CrossRef]
  12. G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
    [CrossRef]
  13. G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
    [CrossRef]
  14. J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.
  15. T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
    [CrossRef]
  16. G. R. Swenson, R. L. Rairden, S. C. Solomon, and S. Ananth, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 37, 5760-5770 (1998).
    [CrossRef]
  17. F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
    [CrossRef]
  18. F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
    [CrossRef]
  19. S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
    [CrossRef]
  20. S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
    [CrossRef]
  21. J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997).
    [CrossRef]
  22. R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
    [CrossRef]
  23. T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
    [CrossRef]
  24. T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
    [CrossRef]
  25. G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
    [CrossRef]
  26. R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
    [CrossRef]
  27. J. W. Chamberlain, Physics of the Aurora and Airglow (American Geophysics Union, 1995).
    [CrossRef]
  28. W. C. Karl, “Regularization in image restoration,” in Handbook of Image and Video Processing A. Bovik, ed. (Academic, 2000), pp. 141-160.
  29. “Special Section: ALOHA/ANLC-93,” J. Geophys. Res. 103, 6249-6481 (1998).
  30. S. B. Mende, R. H. Eather, and E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691-1700 (1977).
    [CrossRef] [PubMed]
  31. G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995).
    [CrossRef]
  32. G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
    [CrossRef]

2007 (2)

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

2005 (2)

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

2003 (1)

A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003)..
[CrossRef]

2002 (1)

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

2001 (1)

S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
[CrossRef]

2000 (3)

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

W. C. Karl, “Regularization in image restoration,” in Handbook of Image and Video Processing A. Bovik, ed. (Academic, 2000), pp. 141-160.

G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
[CrossRef]

1999 (1)

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

1998 (8)

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.

G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998).
[CrossRef]

“Special Section: ALOHA/ANLC-93,” J. Geophys. Res. 103, 6249-6481 (1998).

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

G. R. Swenson, R. L. Rairden, S. C. Solomon, and S. Ananth, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 37, 5760-5770 (1998).
[CrossRef]

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

1997 (3)

J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997).
[CrossRef]

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

1996 (1)

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

1995 (3)

J. W. Chamberlain, Physics of the Aurora and Airglow (American Geophysics Union, 1995).
[CrossRef]

G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995).
[CrossRef]

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
[CrossRef]

1988 (1)

J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
[CrossRef]

1986 (1)

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

1984 (1)

R. A. Vincent, “Gravity-wave motions in the mesosphere,” J. Atmos. Terr. Phys. 46, 119-128 (1984).
[CrossRef]

1982 (1)

J. R. Holton, “The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere,” J. Atmos. Sci. 39, 791-799 (1982).
[CrossRef]

1977 (1)

1960 (1)

C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441-1481 (1960).
[CrossRef]

Aamodt, E. K.

Alexander, M. J.

G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
[CrossRef]

Ananth, S.

Austen, J. R.

J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
[CrossRef]

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

Bauer, O. H.

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

Bernhardt, P.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Budzien, S.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Bust, G.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

C. Plane, J. M.

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

Carr, D. J.

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

Chakrabarti, S.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

Chamberlain, J. W.

J. W. Chamberlain, Physics of the Aurora and Airglow (American Geophysics Union, 1995).
[CrossRef]

Cook, T. A.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

Cotton, D.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Cotton, D. M.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

Doe, R. A.

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

Dymond, K.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Eather, R. H.

Espy, P.

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

Espy, P. J.

G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995).
[CrossRef]

Fehmers, G. C.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

Frank, S.

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

Franke, S. J.

J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
[CrossRef]

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

Frey, H. U.

S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
[CrossRef]

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

Frey, S.

S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
[CrossRef]

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

Fritts, D. C.

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
[CrossRef]

Gardner, C. S.

G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998).
[CrossRef]

Gobbi, D.

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

Gonzalez, S.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Haerendel, G.

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

Haque, R.

G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
[CrossRef]

Hines, C. O.

C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441-1481 (1960).
[CrossRef]

Holton, J. R.

J. R. Holton, “The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere,” J. Atmos. Sci. 39, 791-799 (1982).
[CrossRef]

Isler, J. R.

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
[CrossRef]

J. Kamp, L. P.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

Kamalabadi, F.

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.

Kamp, L. P. J.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

Karl, W. C.

W. C. Karl, “Regularization in image restoration,” in Handbook of Image and Video Processing A. Bovik, ed. (Academic, 2000), pp. 141-160.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

Kelly, J. D.

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

Khudukon, B. Z.

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

Lehtinen, M.

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

Lehtinen, M. S.

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

Liu, A. Z.

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003)..
[CrossRef]

Liu, C. H.

J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
[CrossRef]

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

Lowe, R. P.

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

Markkanen, M.

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

McCoy, R.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Mende, S. B.

S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
[CrossRef]

S. B. Mende, R. H. Eather, and E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691-1700 (1977).
[CrossRef] [PubMed]

Mendillo, M.

J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997).
[CrossRef]

Nikoukar, R.

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

Nygren, T.

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

Qian, J.

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

Rairden, R. L.

Semeter, J.

J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.

J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997).
[CrossRef]

Semeter, J. L.

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

Sluijter, F. W.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

Solomon, S. C.

Spoelstra, T. A.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

Steele, D. P.

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

Stephan, A.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Swenson, G.

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

Swenson, G. R.

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003)..
[CrossRef]

G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
[CrossRef]

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998).
[CrossRef]

G. R. Swenson, R. L. Rairden, S. C. Solomon, and S. Ananth, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 37, 5760-5770 (1998).
[CrossRef]

G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995).
[CrossRef]

T. Spoelstra, T. A.

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

Tang, J.

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

Taylor, M. J.

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
[CrossRef]

Tereshenko, M.

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

Thonnard, S.

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

Turnbull, D. N.

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

Vargas, F.

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

Vincent, R. A.

R. A. Vincent, “Gravity-wave motions in the mesosphere,” J. Atmos. Terr. Phys. 46, 119-128 (1984).
[CrossRef]

Yeh, K. C.

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

Adv. Space Res. (1)

T. Nygren, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903-906(2000).
[CrossRef]

Ann. Geophys. (1)

T. Nygren, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180-1189 (1998).
[CrossRef]

Appl. Opt. (2)

Can. J. Phys. (1)

C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441-1481 (1960).
[CrossRef]

Geophys. Res. Lett. (4)

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837-2840 (1995).
[CrossRef]

G. R. Swenson and P. J. Espy, “Observations of 2-dimensional airglow structure and Na density from the ALOHA, October 9, 1993 'storm flight',” Geophys. Res. Lett. 22, 2845-2848(1995).
[CrossRef]

G. R. Swenson, M. J. Alexander, and R. Haque, “Dispersion imposed limits on atmospheric gravity waves in the mesosphere: observations of OH airglow,” Geophys. Res. Lett. 27, 875-878 (2000).
[CrossRef]

R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, “Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc,” Geophys. Res. Lett. 24, 1119-1122 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

J. Semeter and M. Mendillo, “Nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105-1116 (1997).
[CrossRef]

J. Atmos. Sci. (1)

J. R. Holton, “The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere,” J. Atmos. Sci. 39, 791-799 (1982).
[CrossRef]

J. Atmos. Sol.-Terr. Phys. (1)

F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, and S. Thonnard, “Tomographic studies of aeronomic phenomena using radio and UV techniques,” J. Atmos. Sol.-Terr. Phys. 64, 1573-1580 (2002).
[CrossRef]

J. Atmos. Terr. Phys. (1)

R. A. Vincent, “Gravity-wave motions in the mesosphere,” J. Atmos. Terr. Phys. 46, 119-128 (1984).
[CrossRef]

J. Geophys. Res. (7)

A. Z. Liu and G. R. Swenson, “A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves,” J. Geophys. Res. 108, ACH 11-1 (2003)..
[CrossRef]

G. R. Swenson and C. S. Gardner, “Analytic models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271-6294 (1998).
[CrossRef]

S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, “Auroral emission profiles extracted from three-dimensionally reconstructed arcs,” J. Geophys. Res. 101, 21,731-21,741(1996).
[CrossRef]

S. Frey, S. B. Mende, and H. U. Frey, “Satellite limb tomography applied to airglow of the 630 nm emission,” J. Geophys. Res. 106, 21367-21380 (2001).
[CrossRef]

“Special Section: ALOHA/ANLC-93,” J. Geophys. Res. 103, 6249-6481 (1998).

G. R. Swenson, J. Qian, J. M. C. Plane, P. Espy, M. J. Taylor, D. N. Turnbull, and R. P. Lowe, “Dynamical and chemical aspects of the mesospheric Na 'wall' event on October 9, 1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign,” J. Geophys. Res. 103, 6361-6380(1998).
[CrossRef]

R. Nikoukar, G. Swenson, A. Z. Liu, and F. Kamalabadi, “On the variability of mesospheric OH emission profiles,” J. Geophys. Res. 112 (2007).
[CrossRef]

J. Geophys. Res. [Atmos.] (2)

F. Vargas, G. R. Swenson, A. Z. Liu, and D. Gobbi, “O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere,” J. Geophys. Res. [Atmos.] 112 (2007).
[CrossRef]

J. Tang, G. R. Swenson, A. Z. Liu, and F. Kamalabadi, “Observational investigations of gravity wave momentum flux with spectroscopic imaging,” J. Geophys. Res. [Atmos.] 110 (2005).
[CrossRef]

Proc. SPIE (1)

G. Swenson, J. Tang, F. Kamalabadi, and S. Frank, “Methods of deducing intrinsic measurements of high frequency Atmospheric Gravity Waves (AGWs),” in Proc. SPIE 5979, 59790V(2005).
[CrossRef]

Radio Sci. (5)

T. Nygren, M. Markkanen, M. Lehtinen, M. Tereshenko, and B. Z. Khudukon, “Stochastic inversion in ionospheric radiotomography,” Radio Sci. 32, 2359-2372 (1997).
[CrossRef]

F. Kamalabadi, W. C. Karl, J. L. Semeter, D. M. Cotton, T. A. Cook, and S. Chakrabarti, “A statistical framework for space-based EUV ionospheric tomography,” Radio Sci. 34, 437-447(1999).
[CrossRef]

J. R. Austen, S. J. Franke, and C. H. Liu, “Ionospheric imaging using computerized tomography,” Radio Sci. 23, 299-307(1988).
[CrossRef]

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. T. Spoelstra, “A model-independent algorithm for ionospheric tomography 1. Theory and tests,” Radio Sci. 33, 149-163 (1998).
[CrossRef]

G. C. Fehmers, L. P. J. Kamp, F. W. Sluijter, and T. A. Spoelstra, “A model-independent algorithm for ionospheric tomography 2. Experimental results,” Radio Sci. 33, 165-173 (1998).
[CrossRef]

Other (4)

J. Semeter and F. Kamalabadi, “A natural pixel decomposition for tomographic imaging of the ionosphere,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998 (IEEE Signal Processing Society, 1998), vol. 5, pp. 2913-2916.

J. R. Austen, S. J. Franke, C. H. Liu, and K. C. Yeh, “Application of computerized tomography techniques to ionospheric research,” in International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Proceedings. Part 1, A. Taurianinen, ed. (International Union of Radio Science, 1986), pp. 25-35.

J. W. Chamberlain, Physics of the Aurora and Airglow (American Geophysics Union, 1995).
[CrossRef]

W. C. Karl, “Regularization in image restoration,” in Handbook of Image and Video Processing A. Bovik, ed. (Academic, 2000), pp. 141-160.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the phase fronts of a plane AGW. The propagation speed of the wave relative to the ground is dependent on the mesospheric wind and the intrinsic phase speed of the wave.

Fig. 2
Fig. 2

Typical vertical profiles of a perturbed OH airglow layer. The thin solid lines represent a time-sequential series of a typical vertical emission profile perturbed 5% by a wave with a vertical wavelength of 25 km . The thick solid curve represents the average emission profile. The thin dashed curves represent the time- differenced perturbation profiles, while the thick dashed curve shows their envelope.

Fig. 3
Fig. 3

Diagram of observation geometry. As the airplane travels under the airglow, it achieves multiple angle looks of a slow-moving airglow structure, allowing the possibility of tomographic reconstruction.

Fig. 4
Fig. 4

Diagram of optics. The all-sky image is passed through the optical interference filter via telecentric optics, which minimize the incident angle of the oblique rays on the filter [30].

Fig. 5
Fig. 5

Reconstruction of a simulated wave perturbation with λ x = 40 km and λ z = 25 km . Top panel, original simulated perturbation; bottom panel, reconstruction.

Fig. 6
Fig. 6

Reconstruction of a simulated wave perturbation with λ x = 175 km and λ z = 22 km . The top panel shows its original simulated perturbation; the bottom shows its reconstruction.

Fig. 7
Fig. 7

Time difference images for the two datasets: The top two are from run 15; the bottom two are from run 38.

Fig. 8
Fig. 8

Comparison of one projection of the run 38 reconstruction to the data. The reconstruction is mostly consistent with the data, but small deviations do exist due to our choices in regularization.

Fig. 9
Fig. 9

Run 15 perturbation preconstruction. The lines in the bottom panel show two phase fronts of a wave with 25 km for both horizontal and vertical wavelengths. These particular wavelengths are some of the most commonly observed in airglow [32].

Fig. 10
Fig. 10

Run 38 perturbation reconstruction. The bottom two are contrast-enhanced and highlight two phase fronts that have the same observed phase speed. The dispersion relation supports that these waves intrinsically propagate at the same speed, indicating the internal consistency of the reconstruction.

Tables (2)

Tables Icon

Table 1 Run Parameters

Tables Icon

Table 2 Highlighted Wavelengths Due to Time Differencing

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ x p y p ] = 1 A [ cos ( R ) sin ( R ) sin ( R ) cos ( R ) ] [ e sin ( a ) e cos ( a ) ] + [ x o y o ] ,
g ( x , θ ) = A 0 γ ( θ ) f ( l , x , θ ) d l ,
g ( x , θ ) 0 f ( l , x , θ ) d l .
f J ( l , x , θ ) = j = 1 J f j ϕ j ( l , x , θ ) ,
g ( x , θ ) j = 1 J f j 0 ϕ j ( l , x , θ ) d l .
g = Af ,
J ( f ^ ) = g A f ^ 2 + α 2 D f ^ 2 + β 2 f ^ H f ^ W 1 2 ,
W 1 = { 1 on the vertical bounds 0 else.
f ^ = ( A T A + α 2 D T D + β 2 ( I H ) T W 1 ( I H ) ) 1 A T g .
J ( f ^ ) = g A f ^ 2 + α 2 D f ^ 2 + β 2 f ^ H f ^ W 1 2 + μ 2 f ^ H f ^ W 2 2 ,
W 2 = 1 p ( z ) + 0.01

Metrics