Abstract

The optical system design of a dynamic focus endoscopic probe for optical coherence tomography is reported. The dynamic focus capability is based on a liquid lens technology that provides variable focus by changing its curvatures in response to an electric field variation. The effects of a cylindrical exit window present, in practice, for a catheter were accounted for. Degradation in image quality caused by this window was corrected to get diffraction limited imaging performance. As a result, the dynamically focusing catheter with a lateral resolution ranging from 4 to 6μm through an 5mm imaging distance was designed without mechanically refocusing the system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
    [CrossRef]
  3. G. J. Tearney, Department of Pathology, Massachusetts General Hospital, (personal communication, 2007).
  4. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543-545 (1996).
    [CrossRef] [PubMed]
  5. P. H. Tran, D. S. Mukai, M. Brenner, and Z. P. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational micro-electromechanical system probe,” Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef] [PubMed]
  6. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2261-2263 (2004).
    [CrossRef] [PubMed]
  7. K.-S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44, 4009-4022(2005).
    [CrossRef] [PubMed]
  8. A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
    [CrossRef]
  9. A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
    [CrossRef]
  10. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15, 15854-15862 (2007).
    [CrossRef] [PubMed]
  11. T. Xie, S. Guo, and Z. P. Chen, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14, 3238-3246 (2006).
    [CrossRef] [PubMed]
  12. K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
    [CrossRef]
  13. The specification can only be obtained directly from Varioptic (www.varioptic.com).
  14. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” Proc. of the MEMS 2005, pp. 227-230 (2005).
  15. S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.
  16. H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.
  17. J. D. Lytle, “Polymeric optics,” in Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 34, p. 34.7.

2007

G. J. Tearney, Department of Pathology, Massachusetts General Hospital, (personal communication, 2007).

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15, 15854-15862 (2007).
[CrossRef] [PubMed]

2006

T. Xie, S. Guo, and Z. P. Chen, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14, 3238-3246 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

2005

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” Proc. of the MEMS 2005, pp. 227-230 (2005).

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

K.-S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44, 4009-4022(2005).
[CrossRef] [PubMed]

2004

1996

1995

H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.

J. D. Lytle, “Polymeric optics,” in Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 34, p. 34.7.

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Akcay, A. C.

Barton, J. K.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Berge, B.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” Proc. of the MEMS 2005, pp. 227-230 (2005).

Boppart, S. A.

Bouma, B. E.

Brenner, M.

Brezinski, M. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z. P.

Clarkson, E.

Cooper, S. L.

S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.

Costa, M.

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Delemos, T.

Drexler, W.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Goodnow, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Guo, S.

Hariri, L. P.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Hergenrother, R. W.

S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.

Hermann, B.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Herz, P. R.

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ilegbusi, O.

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Khang, G.

H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.

Kim, S. S.

H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.

Lamda, N. M. K.

S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.

Lee, H. B.

H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.

Lee, K. S.

S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15, 15854-15862 (2007).
[CrossRef] [PubMed]

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Lee, K.-S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lytle, J. D.

J. D. Lytle, “Polymeric optics,” in Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 34, p. 34.7.

Madden, K.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

McNally, J.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Mukai, D. S.

Murali, S.

Petersen, C.

Povazay, B.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rolland, J. P.

Sattman, H.

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Sattmann, H.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

Schmitt, J.

Schneider, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Southern, J. F.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Tran, P. H.

Tumlinson, A. R.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Unterhuber, A.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Visser, S. A.

S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.

Weissman, N. J.

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Wu, L.

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Xie, H.

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Xie, T.

Yang, C. H.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Appl. Opt.

J Biomed. Opt.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. H. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J Biomed. Opt. 11, 063001 (2006).
[CrossRef]

J. Biomed. Opt.

A. R. Tumlinson, B. Povazay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, “In vivo untrahigh-resolution optical coherence tomography of mouse colon with an achomatized endoscope,” J. Biomed. Opt. 11, 064003-1 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc SPIE

A. R. Tumlinson, J. K. Barton, J. McNally, A. Unterhuber, B. Hermann, H. Sattman, and W. Drexler, “An achromatized endoscope for ultrahigh-resolution optical coherence tomography,” Proc SPIE 5861, 586110 (2005).
[CrossRef]

Proc. SPIE

K. S. Lee, L. Wu, H. Xie, O. Ilegbusi, M. Costa, and J. P. Rolland, “A 5 mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy,” Proc. SPIE , 6432, 64320B (2007).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

G. J. Tearney, Department of Pathology, Massachusetts General Hospital, (personal communication, 2007).

The specification can only be obtained directly from Varioptic (www.varioptic.com).

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” Proc. of the MEMS 2005, pp. 227-230 (2005).

S. L. Cooper, S. A. Visser, R. W. Hergenrother, and N. M. K. Lamda, “Polymers,” in Biomaterial Science: an Introduction to Material in Medicine, 2nd ed. (Elsevier Academic, 2004), Chap. 2, p. 78.

H. B. Lee, S. S. Kim, and G. Khang, “Polymeric biomaterial,” in The Biomedical Engineering Handbook (CRC Press, in cooperation with the IEEE Press, 1995), Section IV, Chap. 42, p. 588.

J. D. Lytle, “Polymeric optics,” in Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 34, p. 34.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Catheter design layout.

Fig. 2
Fig. 2

Optical power of the liquid lens as a function of the applied voltage.

Fig. 3
Fig. 3

Ray aberration curves at arbitrary focuses plotted within ± 10 μm maximum scale. The chromatic aberration was optimized at the working distances of 0.5, 1.5, and 3 mm ; a slight degradation is observed at a distance of 4.5 mm from the exit window.

Fig. 4
Fig. 4

Dynamic focus catheter’s layout at three different focus positions; (a)  0.5 mm , (b)  3.0 mm , and (c)  5.5 mm from the outer surface of the exit window.

Fig. 5
Fig. 5

PSF and SR throughout the working range: top, without the cylindrical microlens and using an already ultrathin 50 μm window thickness; bottom, with a cylindrical microlens and a 500 μm window thickness.

Fig. 6
Fig. 6

(a)–(e) PSFs and the corresponding estimated FWHM as indicated by the numbers at the bottom of each PSF. (f)–(j) Resolvability as verified by a two-point source with a separation equal to the corresponding FWHM.

Tables (3)

Tables Icon

Table 1 Design Specification

Tables Icon

Table 2 Dynamic Focusing Performance Throughout the Working Range: Lateral Resolution as Determined by the FWHM of the PSF, Averaged MTF at 100 cycles / mm , and SR at Best Focus

Tables Icon

Table 3 Fabrication and Assembly Tolerance Analysis

Metrics