Abstract

Successful implementation of extreme ultraviolet (EUV) lithography depends on research and progress toward minimizing collector optics degradation from intense plasma erosion and debris deposition. Thus studying the surface degradation process and implementing innovative methods, which could enhance the surface chemistry causing the mirrors to suffer less damage, is crucial for this technology development. A Mo–Au Gibbsian segregation (GS) alloy is deposited on Si using a dc dual-magnetron cosputtering system and the damage is investigated as a result of time dependent exposure in an EUV source. A thin Au segregating layer is maintained through segregation during exposure, even though overall erosion in the Mo–Au sample is taking place in the bulk. The reflective material, Mo, underneath the segregating layer is protected by this sacrificial layer, which is lost due to preferential sputtering. In addition to theoretical work, experimental results are presented on the effectiveness of the GS alloys to be used as potential EUV collector optics material.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Stamm, “Extreme ultraviolet light sources for use in semiconductor lithography: state of the art and future development,” J. Phys. D 37, 3244-3253 (2004).
    [CrossRef]
  2. U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
    [CrossRef]
  3. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
    [CrossRef]
  4. U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
    [CrossRef]
  5. H. Kinoshita, “History of extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 23, 2584-2588 (2005).
    [CrossRef]
  6. E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
    [CrossRef]
  7. B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
    [CrossRef]
  8. K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
    [CrossRef]
  9. E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
    [CrossRef]
  10. H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).
  11. D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
    [CrossRef]
  12. S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
    [CrossRef]
  13. H. Qiu, “Gibbsian segregation alloys driven by thermal and concentration gradients--a potential grazing collector optics used in EUV lithography,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, 2007).
  14. P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).
  15. D. N. Ruzic, “Origin of debris in EUV sources and its mitigation,” in EUV Sources for Lithography, VivekBakshi, ed. (SPIE Press, 2006), Chap. 36.
    [CrossRef]
  16. S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42, 5750-5758 (2003).
    [CrossRef] [PubMed]
  17. L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
    [CrossRef]
  18. S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
    [CrossRef]
  19. International Radiation Detectors Inc., Torrance, CA, www.ird-inc.com.
  20. J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  21. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-670 (1974).
    [CrossRef]
  22. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).
  23. E. Gullikson, http://www-cxro.lbl.gov/optical_constants/.
  24. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
    [CrossRef]
  25. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
    [CrossRef]

2007 (3)

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

H. Qiu, “Gibbsian segregation alloys driven by thermal and concentration gradients--a potential grazing collector optics used in EUV lithography,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, 2007).

2006 (5)

D. N. Ruzic, “Origin of debris in EUV sources and its mitigation,” in EUV Sources for Lithography, VivekBakshi, ed. (SPIE Press, 2006), Chap. 36.
[CrossRef]

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

2005 (3)

H. Kinoshita, “History of extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 23, 2584-2588 (2005).
[CrossRef]

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

2004 (3)

U. Stamm, “Extreme ultraviolet light sources for use in semiconductor lithography: state of the art and future development,” J. Phys. D 37, 3244-3253 (2004).
[CrossRef]

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

2003 (2)

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42, 5750-5758 (2003).
[CrossRef] [PubMed]

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

2002 (1)

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

2001 (1)

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
[CrossRef]

1990 (1)

P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).

1985 (1)

J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon, 1985).

1982 (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

1974 (1)

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-670 (1974).
[CrossRef]

Ahmad, I.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Alameda, J.

Alameda, J. B.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Alman, D. A.

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

Antonsen, E. L.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

Aquila, A.

Bajt, S.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42, 5750-5758 (2003).
[CrossRef] [PubMed]

Baker, S. L.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Birner, H.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Bolshukhin, D.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Borisov, V. M.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Campbell, S. A.

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).

Chapman, H. N.

Chen, P. J.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Chinh, T. D.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Dai, Z. R.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
[CrossRef]

Dowben, P. A.

P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).

Egelhoff, W. F.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Eltsov, A. V.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

Flohrer, F.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Gabel, K.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Gan, L.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Gomez, R. D.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Gotze, S.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Grantham, S.

Gullikson, E.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
[CrossRef]

Hendricks, M. R.

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Hergenhan, G.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Ivanov, A. S.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Jaworski, M. A.

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

Jurczyk, B. E.

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

Khristoforov, O. B.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Kinoshita, H.

H. Kinoshita, “History of extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 23, 2584-2588 (2005).
[CrossRef]

Kiryukhin, Y. B.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

Kleinschmidt, J.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Klopfel, D.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Kohler, P.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Korobotchko, V.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Lopez, E. V.

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

Mader, B.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Malinowski, M.

Mcmichael, R. D.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Miller, A.

P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).

Mishchenko, V. A.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

Muller, R.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Nelson, E. J.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Neumann, M. J.

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

Nguyen, N.

Nguyen, N. Q.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Papke, D.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

Powell, C. J.

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

Prokofiev, A. V.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

Qiu, H.

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

H. Qiu, “Gibbsian segregation alloys driven by thermal and concentration gradients--a potential grazing collector optics used in EUV lithography,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, 2007).

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

Ringling, J.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Robinson, J. C.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42, 5750-5758 (2003).
[CrossRef] [PubMed]

Ruzic, D. N.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

D. N. Ruzic, “Origin of debris in EUV sources and its mitigation,” in EUV Sources for Lithography, VivekBakshi, ed. (SPIE Press, 2006), Chap. 36.
[CrossRef]

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

Schriever, G.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Shimbukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Spencer, J. B.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

Spila, T.

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

Srivastava, S. N.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

Stamm, U.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, “Extreme ultraviolet light sources for use in semiconductor lithography: state of the art and future development,” J. Phys. D 37, 3244-3253 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

Tarrio, C.

Taylor, J. S.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Thompson, K. C.

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

Thornton, J. A.

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-670 (1974).
[CrossRef]

Vinokhodov, A. Y.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Vodchits, V. A.

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

Wall, M. A.

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

Williams, M.

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Ziener, C.

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

Appl. Opt. (1)

At. Data Nucl. Data Tables (2)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50−30000 eV, Z=1−92,” At. Data Nucl. Data Tables , 54, 181-342 (1993).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimbukuro, and B. K. Fujikawa, “Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1-144 (1982).
[CrossRef]

J. Appl. Phys. (3)

E. L. Antonsen, K. C. Thompson, M. R. Hendricks, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Ion debris characterization from z-pinch extreme ultraviolet light source,” J. Appl. Phys. 99, 063301 (2006).
[CrossRef]

L. Gan, R. D. Gomez, C. J. Powell, R. D. Mcmichael, P. J. Chen, and W. F. Egelhoff, “Thin Al, Au, Cu, Ni, Fe, and Ta films as oxidation barriers for Co in air,” J. Appl. Phys. 93, 8731-8733 (2003).
[CrossRef]

S. N. Srivastava, K. C. Thompson, E. L. Antonsen, H. Qiu, J. B. Spencer, D. Papke, and D. N. Ruzic, “Lifetime measurements on collector optics from Xe and Sn extreme ultraviolet sources,” J. Appl. Phys. 102, 023301 (2007).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (2)

H. Qiu, K. C. Thompson, S. N. Srivastava, E. L. Antonsen, D. A. Alman, B. E. Jurczyk, and D. N. Ruzic, “Optical exposure characterization and comparisons for discharge produced plasma Sn extreme ultraviolet system,” J. Micro/Nanolith. MEMS MOEMS 5, 033007 (2006).

D. A. Alman, H. Qiu, T. Spila, K. C. Thompson, E. L. Antonsen, B. E. Jurczyk, and D. N. Ruzic, “Characterization of collector optic material samples exposed to a discharge-produced plasma extreme ultraviolet light source,” J. Micro/Nanolith. MEMS MOEMS 6,013006 (2007).
[CrossRef]

J. Microlithogr. Microfab. Microsyst. (1)

S. Bajt, Z. R. Dai, E. J. Nelson, M. A. Wall, J. B. Alameda, N. Q. Nguyen, S. L. Baker, J. C. Robinson, and J. S. Taylor, “Oxidation resistance and microstructure of ruthenium-capped extreme ultraviolet lithography multilayers,” J. Microlithogr. Microfab. Microsyst. 5, 023004 (2006).
[CrossRef]

J. Phys. D (2)

U. Stamm, “Extreme ultraviolet light sources for use in semiconductor lithography: state of the art and future development,” J. Phys. D 37, 3244-3253 (2004).
[CrossRef]

V. M. Borisov, A. V. Eltsov, A. S. Ivanov, Y. B. Kiryukhin, O. B. Khristoforov, V. A. Mishchenko, A. V. Prokofiev, A. Y. Vinokhodov, and V. A. Vodchits, “EUV sources using Xe and Sn discharge plasmas,” J. Phys. D 37, 3254-3265 (2004).
[CrossRef]

J. Vac. Sci. Technol. (1)

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-670 (1974).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Kinoshita, “History of extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 23, 2584-2588 (2005).
[CrossRef]

Microelectron. Eng. (3)

E. V. Lopez, B. E. Jurczyk, M. A. Jaworski, M. J. Neumann, and D. N. Ruzic, “Origins of debris and mitigation through a secondary RF plasma system for discharge-produced EUV sources,” Microelectron. Eng. 77, 95-102 (2005).
[CrossRef]

B. E. Jurczyk, E. V. Lopez, M. J. Neumann, and D. N. Ruzic, “Illinois debris-mitigation EUV applications laboratory,” Microelectron. Eng. 77, 103-109 (2005).
[CrossRef]

K. C. Thompson, E. L. Antonsen, M. R. Hendricks, B. E. Jurczyk, M. Williams, and D. N. Ruzic, “Experimental test chamber design for optics exposure testing and debris characterization of a xenon discharge produced plasma source for extreme ultraviolet lithography,” Microelectron. Eng. 83, 476-484 (2006).
[CrossRef]

Proc. SPIE (2)

U. Stamm, J. Kleinschmidt, K. Gabel, H. Birner, I. Ahmad, D. Bolshukhin, T. D. Chinh, F. Flohrer, S. Gotze, G. Hergenhan, D. Klopfel, V. Korobotchko, B. Mader, R. Muller, J. Ringling, G. Schriever, and C. Ziener, “High power sources for EUV lithography: state of the art,” Proc. SPIE 5448, 722-736 (2004).
[CrossRef]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gabel, S. Gotze, A. S. Ivanov, O. B. Khristoforov, D. Klopfel, P. Kohler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High power EUV sources for lithography: a comparison of laser produced plasma and gas discharge produced plasma,” Proc. SPIE 4688, 122-133 (2002).
[CrossRef]

Other (7)

International Radiation Detectors Inc., Torrance, CA, www.ird-inc.com.

J. F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon, 1985).

H. Qiu, “Gibbsian segregation alloys driven by thermal and concentration gradients--a potential grazing collector optics used in EUV lithography,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, 2007).

P. A. Dowben and A. Miller, Surface Segregation Phenomena (CRC Press, 1990).

D. N. Ruzic, “Origin of debris in EUV sources and its mitigation,” in EUV Sources for Lithography, VivekBakshi, ed. (SPIE Press, 2006), Chap. 36.
[CrossRef]

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).

E. Gullikson, http://www-cxro.lbl.gov/optical_constants/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dual-magnetron cosputtering system (DMCS) operating with two dc magnetron guns ( 2 in . diameter) at CPMI of UIUC.

Fig. 2
Fig. 2

Schematic of the XCEED exposure tool at CPMI of UIUC.

Fig. 3
Fig. 3

Schematic of the in situ reflectivity measurement in the XCEED system at CPMI of UIUC.

Fig. 4
Fig. 4

Depth profiles of the pre- and postexposed Mo–Au samples: (a) Preexposed Mo–Au sample with a 3 nm Au capping layer, (b) postexposed Mo–Au sample after 1.30   million shots, (c) postexposed Mo–Au sample after 3.36   million shots, and (d) postexposed Mo–Au sample with a preheat temperature of 164 ° C after 5.26   million shots.

Fig. 5
Fig. 5

Sputtering yield calculations for impurity intermixed Mo–Au GS alloys.

Fig. 6
Fig. 6

Rms roughness of the pre- and postexposed Ru and Mo–Au samples in 2D and 3D modes: (a) preexposed Ru sample, (b) postexposed Ru sample after 5.26   million shots, (c) preexposed Mo–Au sample with a 3 nm Au capping layer, (d) postexposed Mo–Au sample after 1.30   million shots, (e) postexposed Mo–Au sample after 3.36   million shots, and (f) postexposed Mo–Au sample with a preheat temperature of 164 ° C after 5.26   million shots.

Fig. 7
Fig. 7

Graphical illustration of the profile heights of the columnar islands on the surface of the Mo–Au GS alloy (not in scale). Rigid profile represents the columnar islands of Mo–1%Au with a dense, tall microstructure. Overlaying profile represents the covered Au capping layer with a loose, low overall profile of surface height.

Fig. 8
Fig. 8

Normalized reflectivity measurements of the commercial Ru and the Mo-1.64%Au samples exposed to up to 5.26   million Xe EUV shots. Region I: in this region the Au capping layer is almost removed and the GS process is just initiated. Region II: in this region the GS process is fully activated and promoted to self-heal the eroded surface toward the new equilibrium between GS and erosion. Region III: in this region, the GS process reaches its new equilibrium to dynamically balance the steady erosion to maintain the reflectivity at a new equilibrium level.

Fig. 9
Fig. 9

The integrated reflectivities of the reference and reflection signals of the exposed Ru and three Mo–Au samples. The unstable signals are from the impacts of the unstable EUV source emission, the degradation of the reflecting mirrors due from the ion erosion, the angular variations of the four measuring locations of the reflection photodiode, and the time difference of the measurements of the four samples at giving exposure time.

Fig. 10
Fig. 10

Theoretical estimate of the reflectivity reduction due to the presence of impurity in the first 10 nm of film of the Mo–1%Au GS alloy. The Au concentration in that 10 nm of film is fixed at 20% according to the AES depth profiles of the exposed Mo–Au samples. The Mo concentration in that 10 nm of film varies with the impurity components.

Tables (2)

Tables Icon

Table 1 SEM Results of the Time Duration Exposure Experiment a

Tables Icon

Table 2 AFM Results for the Ru and Mo–Au Samples for the Time Duration Exposure Experiment a

Metrics