Abstract

We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30μm) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid-N2-cooled photoconductive devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, J. Workman, Jr., and A. Springsteen, eds. (Academic Press, 1998), pp. 194-224.
  2. S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002).
    [CrossRef]
  3. S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000).
    [CrossRef]
  4. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196-3204 (2001).
    [CrossRef]
  5. F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993).
    [CrossRef]
  6. M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993).
    [CrossRef]
  7. T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998).
    [CrossRef]
  8. G. Eppeldauer and M. Racz, “Spectral power and irradiance responsivity calibration of InSb working-standard radiometers,” Appl. Opt. 39, 5739-5744 (2000).
    [CrossRef]
  9. H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
    [CrossRef]
  10. N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
    [CrossRef]
  11. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002).
    [CrossRef]
  12. G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
    [CrossRef]
  13. A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000).
    [CrossRef]
  14. Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
    [CrossRef]
  15. R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
    [CrossRef]
  16. The mention of certain trade names in this manuscript is for informational purposes only and not meant to imply endorsement by NIST or that the products described are necessarily the best suited for the purpose.
  17. S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).
  18. A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
    [CrossRef]
  19. J. Geist, “Infrared absorption cross section of arsenic in silicon in the impurity band region of concentration,” Appl. Opt. 28, 1193-1199 (1989).
    [CrossRef] [PubMed]
  20. L. M. Hanssen, “Effects of restricting the detector field of view when using integrating spheres,” Appl. Opt. 28, 2097-2103(1989).
    [CrossRef] [PubMed]
  21. Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077-1079 (1995).
    [CrossRef] [PubMed]

2004 (1)

H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
[CrossRef]

2003 (1)

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

2002 (2)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002).
[CrossRef]

S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002).
[CrossRef]

2001 (1)

2000 (4)

S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000).
[CrossRef]

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000).
[CrossRef]

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

G. Eppeldauer and M. Racz, “Spectral power and irradiance responsivity calibration of InSb working-standard radiometers,” Appl. Opt. 39, 5739-5744 (2000).
[CrossRef]

1998 (2)

A. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, J. Workman, Jr., and A. Springsteen, eds. (Academic Press, 1998), pp. 194-224.

T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998).
[CrossRef]

1995 (2)

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077-1079 (1995).
[CrossRef] [PubMed]

1994 (1)

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

1993 (3)

G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
[CrossRef]

F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993).
[CrossRef]

M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993).
[CrossRef]

1989 (2)

1986 (1)

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

Bittar, A.

M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993).
[CrossRef]

Bruce, S. S.

T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998).
[CrossRef]

Carter, A. C.

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Cromer, C. L.

G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
[CrossRef]

Datla, R. U.

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077-1079 (1995).
[CrossRef] [PubMed]

Eppeldauer, G.

Eppeldauer, G. P.

H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
[CrossRef]

G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
[CrossRef]

Fischer, J.

F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

Gaugue, A.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000).
[CrossRef]

Geist, J.

Gershenzon, E. M.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Gol'tsman, G. N.

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Gong, H.

H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
[CrossRef]

Gousev, Yu. P.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Hanssen, L.

Hanssen, L. M.

H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
[CrossRef]

S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002).
[CrossRef]

S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000).
[CrossRef]

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “High-optical-density out-of-band spectral transmittance measurements of bandpass filters,” Opt. Lett. 20, 1077-1079 (1995).
[CrossRef] [PubMed]

L. M. Hanssen, “Effects of restricting the detector field of view when using integrating spheres,” Appl. Opt. 28, 2097-2103(1989).
[CrossRef] [PubMed]

Heusinger, M. A.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Jung, T. M.

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Kaplan, S. G.

S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002).
[CrossRef]

S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000).
[CrossRef]

Klemme, B. J.

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Kreisler, A. J.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000).
[CrossRef]

Larason, T. C.

T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998).
[CrossRef]

Lei, F.

F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993).
[CrossRef]

Lipatov, A.

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

Lorentz, S. R.

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Mekhontsev, S. N.

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

Migdall, A. L.

G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
[CrossRef]

Nebosis, R. S.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Prior, T. R.

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

Racz, M.

Renk, K. F.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Reynolds, D. B.

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002).
[CrossRef]

Semenov, A. D.

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Sobolewski, R.

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

Springsteen, A.

A. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, J. Workman, Jr., and A. Springsteen, eds. (Academic Press, 1998), pp. 194-224.

Stapelbroek, M. G.

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

Stermer, R. L.

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

Stetson, S. B.

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

Theocharous, E.

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

Verevkin, A.

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

White, M. G.

M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993).
[CrossRef]

Wilsher, K.

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

Zhang, Z. M.

Appl. Opt. (4)

IEEE Trans. Appl. Supercond. (1)

R. Sobolewski, A. Verevkin, G. N. Gol'tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151-1157 (2003).
[CrossRef]

Infrared Phys. Technol. (2)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002).
[CrossRef]

S. G. Kaplan and L. M. Hanssen, “Silicon as a standard material for infrared reflectance and transmittance from 2 to 5 μm,” Infrared Phys. Technol. 43, 389-396 (2002).
[CrossRef]

J. Appl. Phys. (1)

Yu. P. Gousev, G. N. Gol'tsman, A. D. Semenov, E. M. Gershenzon, R. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75, 3695-3697 (1994).
[CrossRef]

Metrologia (6)

G. P. Eppeldauer, A. L. Migdall, and C. L. Cromer, “Characterization of a high sensitivity composite silicon bolometer,” Metrologia 30, 317 (1993).
[CrossRef]

H. Gong, L. M. Hanssen, and G. P. Eppeldauer, “Spatial and angular responsivity measurements of photoconductive HgCdTe LWIR radiometers,” Metrologia 41, 161-166 (2004).
[CrossRef]

N. P. Fox, T. R. Prior, E. Theocharous, and S. N. Mekhontsev, “Solid-state detectors for infrared radiometry,” Metrologia 32, 609-613 (1995).
[CrossRef]

F. Lei and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297-303 (1993).
[CrossRef]

M. G. White and A. Bittar, “Uniformity of quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361-364 (1993).
[CrossRef]

T. C. Larason and S. S. Bruce, “Spatial uniformity of responsivity for silicon, gallium nitride, germanium, and indium gallium arsenide photodiodes,” Metrologia 35, 491-496 (1998).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

S. G. Kaplan and L. M. Hanssen, “Angle-dependent absolute infrared reflectance and transmittance measurements,” Proc. SPIE 4103, 75-84 (2000).
[CrossRef]

S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer, “Design and performance of blocked-impurity-band detector focal plane arrays,” Proc. SPIE 686, 48-65 (1986).

A. C. Carter, S. R. Lorentz, T. M. Jung, B. J. Klemme, and R. U. Datla, “NIST facility for spectral calibration of detectors: calibration of arsenic doped silicon blocked impurity band detectors,” Proc. SPIE 4028, 420 (2000).
[CrossRef]

Supercond. Sci. Technol. (1)

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconducting bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235-1245 (2000).
[CrossRef]

Other (2)

A. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, J. Workman, Jr., and A. Springsteen, eds. (Academic Press, 1998), pp. 194-224.

The mention of certain trade names in this manuscript is for informational purposes only and not meant to imply endorsement by NIST or that the products described are necessarily the best suited for the purpose.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of cryostat design. The l N 2 and lHe reservoirs are shown together with the vacuum shell and the l N 2 and lHe radiation shields. Also indicated are the mounting positions for the two BIB detector modules and the vacuum windows.

Fig. 2
Fig. 2

Schematic electrical layout of the detector system, showing a bottom view of the cold plate, and both detector modules. The wiring to the vacuum feedthrough is indicated for DM 1.

Fig. 3
Fig. 3

Positioning system diagram. X and Y are the two linear translation stages for motion along and perpendicular to the optical axis. Z are the twin lead screws for coarse height adjustment. Indicated by z are the actuators for fine adjustment. R indicates the rotational degrees of freedom as discussed in the text.

Fig. 4
Fig. 4

Thermal dark current versus temperature for both detector modules. The open circles are for DM 1 (integrating sphere) and the filled diamonds for DM 2 (OD 3.3 filter.)

Fig. 5
Fig. 5

Experimental set up for spectral signal-to-noise ratio and spatial uniformity measurements of the BIB detectors, showing the coupling of the output beam from the FTIR spectrometer into the detector module. 1, variable aperture plate; 2, 50 mm diameter f / 4 paraboloidal mirror; 3, folding mirror; 4, 50 mm diameter f / 3 paraboloidal mirror.

Fig. 6
Fig. 6

(a) Comparison of noise performance of the two BIB detector configurations with a pyroelectric DTGS detector with equivalent incident flux level. Plots of the BIB DM 1 and DTGS data have been offset by 0.002 and 0.004, respectively. While the noise levels are similar at short wavelengths, the BIB detectors show improved performance beyond 15 μm . (b) Spectral flux level recorded by the DTGS and BIB detectors. The DTGS spectrum has been multiplied by two in order to match the peak of the BIB spectrum.

Fig. 7
Fig. 7

(a) Contour plot of spatial responsivity uniformity data for DM 2, starting at 55%, with lines every 5%. The dashed line is the nominal focused beam spot. (b) Same as (a) but including the corresponding simulation results as dashed–dotted lines (c) Contour line internal area for both measured (solid) and simulated (dashed–dotted) results, versus labeled intensity. (d) Uniformity contour plot of the central 50% of the detector area that could be sampled effectively without beam clipping.

Fig. 8
Fig. 8

Spatial uniformity contour plot for the central 50% of DM 1, along with the derived beam profile.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Thermal Background Current Values, I back , for the Two BIB Detector Configurations Discussed in the Text a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ = A out A Sph R wall 1 R avg R avg = R wall ( 1 A out A Sph A in A Sph ) ,

Metrics