Abstract

We have implemented a tunable laser frequency lock with a wide recapture range and low sensitivity to temperature fluctuation, based on electronically power-normalized Doppler-broadened absorption spectra. The method requires no frequency modulation. A distributed-feedback diode laser locked to this system exhibits submegahertz stability over many hours. It has been used to magneto-optically trap rubidium atoms for a full day.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapor,” J. Phys. E 5, 926-930 (1972).
    [CrossRef]
  2. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
    [CrossRef]
  3. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  4. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002).
    [CrossRef]
  5. C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
    [CrossRef]
  6. C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
    [CrossRef]
  7. J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
    [CrossRef]
  8. M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155(2005).
    [CrossRef] [PubMed]
  9. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
    [CrossRef]
  10. http://www.analog.com/UploadedFiles/Data_Sheets/AD534.pdf.
  11. P. C. D. Hobbs, “Ultrasensitive laser measurement without tears,” Appl. Opt. 36, 903-920 (1997).
    [CrossRef] [PubMed]

2006

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

2005

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155(2005).
[CrossRef] [PubMed]

2004

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

2002

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002).
[CrossRef]

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
[CrossRef]

1998

1997

1992

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

1972

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapor,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

Bruzewicz, C. D.

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

Busch, H. C.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Chien, M.-H.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

Chou, C.-C.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

Close, J. D.

Corwin, K. L.

Dinneen, T. P.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Epstein, R. J.

Gould, P. L.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Gray, M. B.

Hand, C. F.

Hobbs, P. C. D.

Huang, P.-C.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

Kerckhoff, J. A.

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

Lin, T.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

Lu, Z. T.

Luiten, A.

Majumder, P. K.

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

Maric, M.

Mehendale, S. C.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Mishra, S. R.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Rawat, H. S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Robins, N. P.

Shaddock, D. A.

Shiddiq, M.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Singh, S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Slagmolen, B. J. J.

Sukenik, C. I.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Tiwari, V. B.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Uhl, R.

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

Wallace, C. D.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Wallard, A. J.

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapor,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

Wieman, C. E.

Appl. Opt.

IEEE Photon. Technol. Lett.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948-1950 (2004).
[CrossRef]

J. Phys. E

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapor,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

Opt. Commun.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203, 133-137 (2002).
[CrossRef]

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255(2006).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

J. A. Kerckhoff, C. D. Bruzewicz, R. Uhl, and P. K. Majumder, “A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry,” Rev. Sci. Instrum. 76, 093108 (2005).
[CrossRef]

Other

http://www.analog.com/UploadedFiles/Data_Sheets/AD534.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup showing laser stabilization and independent frequency measurement. DFB, laser; OI, optical isolator; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; GS, glass slide; PMF, polarization-maintaining fiber; L, lens; AOM-NI, acousto-optic modulator (normal incidence); BS, beam splitter; PD, photodiode; SOL, solenoid; VC, vapor cell; AOM-DP, acousto-optic modulator (double-pass); TBS, thick beam splitter; M, mirror.

Fig. 2
Fig. 2

Schematic layout of circuit to normalize absorption signals and take their difference. All unlabeled operational amplifiers are OP-27.

Fig. 3
Fig. 3

Raw and normalized absorption signals versus laser detuning, taken from different beam paths before amplification. The main features are labeled according to hyperfine levels involved in the particular optical transition. The feature near the end of the scan is associated with a laser mode hop.

Fig. 4
Fig. 4

DL error signals versus laser frequency for various magnetic field settings. In these curves the quarter-wave plate was set to minimize changing lock slope as a function of magnetic field. The curves are vertically offset for clarity.

Fig. 5
Fig. 5

Long-term laser frequency stability as measured by the intensity-normalized saturated absorption setup. The solid curve is a 2.5 Hz low-passed version of the data to guide the eye. The 2 MHz spread in data is consistent with the quoted linewidth of the DFB laser, and the dashed lines show a 1 MHz frequency interval.

Fig. 6
Fig. 6

Wavelength of the frequency-locked laser versus solenoid magnetic field. Vertical error bars reflect the absolute accuracy of the Bristol Instruments 821B-VIS wavelength meter. The linear fit to the data yields a lock-point tuning slope of 1.66 MHz / G .

Metrics