Abstract

Cypate-octreote peptide analogue conjugate (Cytate) was investigated as a prostate cancer receptor- targeted contrast agent. The absorption and fluorescence spectra of Cytate were ranged in the near- infrared “tissue optical window.” Time-resolved investigation of polarization-dependent fluorescence emitted from Cytate in solution as well as in cancerous and normal prostate tissues was conducted. Polarization preservation characteristics of Cytate in solution and tissues were studied. Fluorescence intensity emitted from the Cytate-stained cancerous prostate tissue was found to be much stronger than that from the Cytate-stained normal prostate tissue, indicating more Cytate uptake in the former tis sue type. The polarization anisotropy of Cytate contained in cancerous prostate tissue was found to be larger than that in the normal prostate tissue, indicating a larger degree of polarization preservation in Cytate-stained cancerous tissue. The temporal profiles of fluorescence from Cytate solution and from Cytate-stained prostate tissue were fitted using a time-dependent fluorescence depolarization model. The photoluminescence imaging of Cytate-stained cancerous and normal prostate tissues was accomplished, showing the potential of Cytate as a fluorescence marker for prostate cancer detection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).
  2. R. Ferrini and S. H. Woolf, “Screening for prostate cancer in American men: American College of Preventive Medicine practice policy statement,” http://www.acpm.org/prostate.htm
  3. D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45-78 (2002).
  4. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
    [CrossRef]
  5. R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).
  6. B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
    [CrossRef]
  7. I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys. Med. Biol. 42, 803-814(1997).
  8. S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomedicine 1, 23-30 (2006).
  9. A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435 (1997).
  10. Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).
  11. K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
    [CrossRef]
  12. K. C. Smith, The Science of Photobiology, 2nd ed. (Plenum, 1989).
  13. D. J. Dean and B. J. Korte, “Biomedical imaging and bioengineering,” Opt. Photon. News (October 2003), http://ultra.bu.edu/papers/2003_10_OPN.pdf.
  14. L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).
  15. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 mm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef]
  16. J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).
  17. B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).
  18. J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).
  19. S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
    [CrossRef]
  20. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
    [CrossRef]
  21. G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
    [CrossRef]
  22. G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
    [CrossRef]
  23. A. V. Schally, “Oncological applications of somatostatin analogs,” Cancer Res. 48, 6977-6985 (1988).
  24. L. J. Hofland and S. W. J. Lamberts, “Somatostatin subtype expression in human tumors,” Ann. Oncol. 12 (2), 31-36 (2001)
    [CrossRef]
  25. E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).
  26. J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).
  27. Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).
  28. F. Pellegrino, “Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy,” Ph.D. dissertation (City University of New York, 1981), pp. 270-315.
  29. A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236-1239 (2007).
    [CrossRef]
  30. W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).
  31. D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).
  32. M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.
  33. T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
    [CrossRef]
  34. D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical prostatic staging,” J. Urol. 111, 58-64 (1974).
  35. H. P. M. de Oliveira and M. H. Gehlen, “Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid) in solution,” J. Braz. Chem. Soc . 14, 738-743 (2003).

2007 (3)

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236-1239 (2007).
[CrossRef]

2006 (2)

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomedicine 1, 23-30 (2006).

2005 (2)

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

2004 (1)

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

2003 (1)

H. P. M. de Oliveira and M. H. Gehlen, “Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid) in solution,” J. Braz. Chem. Soc . 14, 738-743 (2003).

2002 (4)

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
[CrossRef]

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45-78 (2002).

2001 (2)

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

L. J. Hofland and S. W. J. Lamberts, “Somatostatin subtype expression in human tumors,” Ann. Oncol. 12 (2), 31-36 (2001)
[CrossRef]

2000 (2)

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

1998 (1)

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

1997 (4)

B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
[CrossRef]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys. Med. Biol. 42, 803-814(1997).

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435 (1997).

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

1995 (1)

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

1991 (1)

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

1989 (1)

K. C. Smith, The Science of Photobiology, 2nd ed. (Plenum, 1989).

1988 (1)

A. V. Schally, “Oncological applications of somatostatin analogs,” Cancer Res. 48, 6977-6985 (1988).

1984 (1)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

1981 (1)

F. Pellegrino, “Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy,” Ph.D. dissertation (City University of New York, 1981), pp. 270-315.

1977 (1)

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
[CrossRef]

1976 (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
[CrossRef]

1974 (1)

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical prostatic staging,” J. Urol. 111, 58-64 (1974).

1973 (1)

Abrahamsson, P.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Achilefu, S.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

Alfano, M.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Alfano, R. R.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
[CrossRef]

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Ali, J.

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

Ali, J. H.

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

Ballou, B.

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Becker, A.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Benaron, D. A.

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45-78 (2002).

Berk, S. C.

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

Beysens, D. A.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).

Bigio, I. J.

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys. Med. Biol. 42, 803-814(1997).

Birzin, E. T.

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

Bjartell, A.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Bugaj, J. E.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

Celmer, E.

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

Chance, B.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435 (1997).

Cleary, J. B.

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

Cordero, J.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Das, B. B.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
[CrossRef]

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

de Oliveira, H. P. M.

H. P. M. de Oliveira and M. H. Gehlen, “Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid) in solution,” J. Braz. Chem. Soc . 14, 738-743 (2003).

Dean, D. J.

D. J. Dean and B. J. Korte, “Biomedical imaging and bioengineering,” Opt. Photon. News (October 2003), http://ultra.bu.edu/papers/2003_10_OPN.pdf.

Degiorgis, P. G.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Deisboeck, T. S.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Delsanto, P. P.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Demos, S. G.

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

Deng, J. S.

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Dizeyi, N.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Dorshow, R. B.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

Dresner, M. A.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Ehman, R. L.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Ferrini, R.

R. Ferrini and S. H. Woolf, “Screening for prostate cancer in American men: American College of Preventive Medicine practice policy statement,” http://www.acpm.org/prostate.htm

Fisher, G. W.

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Fleming, G. R.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
[CrossRef]

Forgacs, G.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).

Gadaleanu, V.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Gehlen, M. H.

H. P. M. de Oliveira and M. H. Gehlen, “Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid) in solution,” J. Braz. Chem. Soc . 14, 738-743 (2003).

Giorgio, P.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Glazier, J. A.

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).

Gleason, D. F.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical prostatic staging,” J. Urol. 111, 58-64 (1974).

Guiot, C.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Hakala, T. R.

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Hale, G. M.

Hansson, J.

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Hofland, L. J.

L. J. Hofland and S. W. J. Lamberts, “Somatostatin subtype expression in human tumors,” Ann. Oncol. 12 (2), 31-36 (2001)
[CrossRef]

Jemal, A.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Kai, L.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Kontogeorgos, G.

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

Korte, B. J.

D. J. Dean and B. J. Korte, “Biomedical imaging and bioengineering,” Opt. Photon. News (October 2003), http://ultra.bu.edu/papers/2003_10_OPN.pdf.

Kruse, S. A.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Kumar, S.

S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomedicine 1, 23-30 (2006).

Lamberts, S. W. J.

L. J. Hofland and S. W. J. Lamberts, “Somatostatin subtype expression in human tumors,” Ann. Oncol. 12 (2), 31-36 (2001)
[CrossRef]

Liu, Feng

B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
[CrossRef]

Lombardo, J. M.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Lonyo, F.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Mansury, Y.

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

Markwalder, R.

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

Mellinger, G. T.

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical prostatic staging,” J. Urol. 111, 58-64 (1974).

Morris, J. M.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
[CrossRef]

Mosley, R. T.

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

Mourant, J. R.

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys. Med. Biol. 42, 803-814(1997).

Murray, T.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Mycek, M.-A.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
[CrossRef]

Ntziachristos, V.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Pateraki, M.

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

Pellegrino, F.

F. Pellegrino, “Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy,” Ph.D. dissertation (City University of New York, 1981), pp. 270-315.

Peters, S.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Pogue, B.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
[CrossRef]

Porter, G.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
[CrossRef]

Prudente, R.

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

Pu, Y.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Querry, M. R.

Rajagopalan, R.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

Reubi, J. C.

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

Richards-Kortum, R.

S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomedicine 1, 23-30 (2006).

Riefke, B.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Robinson, G. W.

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
[CrossRef]

Rohrer, S. P.

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

Rossman, P. J.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Sadkowski, P. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
[CrossRef]

Sawczuk, I.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Schaer, J. C.

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

Schally, A. V.

A. V. Schally, “Oncological applications of somatostatin analogs,” Cancer Res. 48, 6977-6985 (1988).

Semmler, W.

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Shmilovici, A.

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236-1239 (2007).
[CrossRef]

Siegel, R.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Smith, K. C.

K. C. Smith, The Science of Photobiology, 2nd ed. (Plenum, 1989).

Sriramoju, V.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Srivastava, M.

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Tang, G. C.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Tata, D.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Theodossiou, D.

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

Thodou, E.

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

Thun, M. J.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Tomashefsky, P.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

Tredwell, C. J.

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
[CrossRef]

Villringer, A.

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435 (1997).

Vishwanath, K.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
[CrossRef]

Vitenson, J. H.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Wang, W. B.

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

Ward, E.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Waser, B.

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

Woolf, S. H.

R. Ferrini and S. H. Woolf, “Screening for prostate cancer in American men: American College of Preventive Medicine practice policy statement,” http://www.acpm.org/prostate.htm

Xu, J.

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Zeng, F.

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Zevallos, M.

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

Ann. Oncol. (1)

L. J. Hofland and S. W. J. Lamberts, “Somatostatin subtype expression in human tumors,” Ann. Oncol. 12 (2), 31-36 (2001)
[CrossRef]

Appl. Opt. (1)

Bull. N.Y. Acad. Med. (1)

R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente, and E. Celmer, “Light sheds light on cancer: distinguishing malignant tumor from benign tissues and tumors,” Bull. N.Y. Acad. Med. 67, p. 143 (1991).

CA Cancer J. Clin. (1)

A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA Cancer J. Clin. 57, 43-66 (2007).

Cancer Detect. Prev. (1)

B. Ballou, G. W. Fisher, J. S. Deng, T. R. Hakala, and M. Srivastava , “Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7,” Cancer Detect. Prev. 22, 251-257 (2000).

Cancer Metastasis Rev. (1)

D. A. Benaron, “The future of cancer imaging,” Cancer Metastasis Rev. 21, 45-78 (2002).

Cancer Res. (1)

A. V. Schally, “Oncological applications of somatostatin analogs,” Cancer Res. 48, 6977-6985 (1988).

Chem. Phys. (1)

G. R. Fleming, J. M. Morris, and G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91-100 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

G. Porter, P. J. Sadkowski, and C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416-420 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Lonyo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507-1511 (1984).
[CrossRef]

J. Biomed. Opt. (1)

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumor based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122-133 (2001).
[CrossRef]

J. Braz. Chem. Soc (1)

H. P. M. de Oliveira and M. H. Gehlen, “Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid) in solution,” J. Braz. Chem. Soc . 14, 738-743 (2003).

J. Clin. Endocrinol. Metabol. (1)

J. C. Reubi, B. Waser, J. C. Schaer, and R. Markwalder, “Somatostatin receptors in human prostate and prostate cancer,” J. Clin. Endocrinol. Metabol. 80, 2806-2814 (1995).

J. Clin. Pathol. (1)

E. Thodou, G. Kontogeorgos, D. Theodossiou, and M. Pateraki, “Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas,” J. Clin. Pathol. 59, 274-279(2006).

J. Urol. (1)

D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostate adenocarcinoma by combined histological and clinical prostatic staging,” J. Urol. 111, 58-64 (1974).

Med. Hypoth. (2)

T. S. Deisboeck, Y. Mansury, C. Guiot, P. G. Degiorgis, P. Giorgio, and P. P. Delsanto, “Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion,” Med. Hypoth. 65, 785-790 (2005).
[CrossRef]

A. Shmilovici, “Incomplete tumor volume reduction may improve cancer prognosis,” Med. Hypoth. 68, 1236-1239 (2007).
[CrossRef]

Nanomedicine (1)

S. Kumar and R. Richards-Kortum, “Optical molecular imaging agents for cancer diagnostics and therapeutics,” Nanomedicine 1, 23-30 (2006).

Opt. Commun. (2)

Y. Pu, W. B. Wang, S. Achilefu, B. B. Das, G. C. Tang, V. Sriramoju, and R. R. Alfano, “Time-resolved fluorescence polarization anisotropy and optical imaging of Cytate in cancerous and normal prostate tissues,” Opt. Commun. 274, 260-267 (2007).

W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, “Imaging fluorescence objects embedded inside animal tissue using a polarization difference technique,” Opt. Commun. 142, 161-166 (1997).

Opt. Photon. News (1)

D. J. Dean and B. J. Korte, “Biomedical imaging and bioengineering,” Opt. Photon. News (October 2003), http://ultra.bu.edu/papers/2003_10_OPN.pdf.

Photochem. Photobiol. (1)

L. Kai, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392-398 (2002).

Phys. Med. Biol. (2)

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 473387-3405 (2002).
[CrossRef]

I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys. Med. Biol. 42, 803-814(1997).

Proc. Natl. Acad. Sci. USA (1)

D. A. Beysens, G. Forgacs, and J. A. Glazier, “Cell sorting is analogous to phase ordering in fluids,” Proc. Natl. Acad. Sci. USA 97, 9467-9471 (2000).

Prostate (1)

J. Hansson, A. Bjartell, V. Gadaleanu, N. Dizeyi, and P. Abrahamsson, “Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer,” Prostate 53(4), 50-59 (2002).

Rep. Prog. Phys. (1)

B. B. Das, Feng Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227 (1997)
[CrossRef]

Science (1)

S. P. Rohrer, E. T. Birzin, R. T. Mosley, and S. C. Berk, “Rapid identification of subtype-selective agonists of somatostatin receptor through combined chemistry,” Science 282, 737-740(1998).
[CrossRef]

Technol. Cancer Res. Treat. (2)

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3491-497 (2004).

Y. Pu, W. B. Wang, G. C. Tang, F. Zeng, S. Achilefu, J. H. Vitenson, I. Sawczuk, S. Peters, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human prostate cancer tissue using a near-infrared receptor-targeted contrast agent,” Technol. Cancer Res. Treat. 4, 429-436 (2005).

Trends Neurosci. (1)

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435 (1997).

Other (4)

R. Ferrini and S. H. Woolf, “Screening for prostate cancer in American men: American College of Preventive Medicine practice policy statement,” http://www.acpm.org/prostate.htm

K. C. Smith, The Science of Photobiology, 2nd ed. (Plenum, 1989).

F. Pellegrino, “Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy,” Ph.D. dissertation (City University of New York, 1981), pp. 270-315.

M. A. Dresner, P. J. Rossman, S. A. Kruse, and R. L. Ehman, “MR elastography of the prostate,” ISMRM 99 CDshttp://cds.ismrm.org/ismrm-1999/PDF2/526.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the cypate-octreote peptide analogue conjugate (Cytate). The part enclosed by a dashed box is ICG (nonspecific dye without a SSTR ligand). R indicates the molecule chain of a SSTR ligand.

Fig. 2
Fig. 2

(a) Absorption and (b) fluorescence spectra of Cytate in 20% aqueous DMSO. The fluorescence was obtained with an excitation of a 680 nm diode laser beam.

Fig. 3
Fig. 3

Schematic diagram of the optical spectral imaging setup. The structure of a Cytate-stained cancerous-and-normal prostate tissue sample covered by a large piece of normal prostate tissue is shown schematically in the sample position.

Fig. 4
Fig. 4

Temporal polarization profiles and polarization anisotropy of light emitted from Cytate in 20% aqueous DMSO with a polarized 800 nm laser illumination. (a) Profiles of the time-resolved fluorescence components having polarization directions parallel (thick curve) and perpendicular (thin curve) to the polarization direction of the exciting light. The thin-dashed curve displays the normalized perpendicular components. (b) Time-dependent polarization anisotropy (thin curve) calculated using the measured data shown in (a) and Eq. (1) shown in the text, and the fitting curve (thick curve) calculated using Eq. (2) shown in the text and the data shown by the thin curve in Fig. 5b.

Fig. 5
Fig. 5

(a) Time-resolved fluorescence intensity of light emitted from Cytate-stained cancerous and normal prostate tissues with 800 nm laser illumination. The thick-solid and thick-dashed curve profiles are the parallel and perpendicular components emitted from Cytate-stained cancerous prostate tissue, respectively. The thin-solid and thin-dashed curve profiles display the parallel and perpendicular components emitted from Cytate-stained normal prostate tissues, respectively. (b) Time-dependent polarization anisotropy calculated using Eq. (1) shown in the text and the measured data shown in Fig. 5a. The thin-solid and thin-dashed curve profiles indicate the r ( t ) for Cytate-stained cancerous and normal prostate tissues, respectively. The fitting curves for Cytate in cancerous prostate tissue (thick-solid curve) and Cytate in normal prostate tissue (thin-solid curve) were calculated using Eq. (3)shown in the text and the corresponding polarization anisotropy shown in Fig. 5b.

Fig. 6
Fig. 6

(a) Contrast agent fluorescence image of a cancerous-and-normal prostate tissue sample (a tiny piece of Cytate-stained cancerous prostate tissue and a tiny piece of Cytate-stained normal prostate tissue covered by a large piece of normal prostate tissue). (b) Digital spatial cross section intensity distribution of the image shown in Fig. 6a at a row crossing the areas of the stained cancer (C) and normal (N) tissues.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = I ( t ) I ( t ) I ( t ) + 2 I ( t ) .
r ( t ) = r ( 0 ) exp ( t τ rot ) ,
r ( t ) = r 1 + r 0 exp ( - t τ rot ) ,

Metrics