Abstract

An electro-optic sensor capable of detecting electric fields with a high degree of sensitivity and linearity is fabricated using optical D-fiber. The slab coupled optical sensor utilizes weak coupling and long evanescent interaction with a lithium niobate waveguide. Transmission dips from mode resonances have a linewidth of 0.12nm and a Q factor of 13,000. These sharp resonances improve device sensitivity and are achieved due to the unique fabrication process possible with D-shaped fibers. The sensor deviates <0.1% from linearity while monitoring fields between 200V/m and 20kV/m and promises high sensitivity to fields well beyond that range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.
  2. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
    [CrossRef]
  3. A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, L83 (2002).
    [CrossRef]
  4. L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
    [CrossRef]
  5. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
    [CrossRef]
  6. W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
    [CrossRef]
  7. G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
    [CrossRef]
  8. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
    [CrossRef] [PubMed]
  9. K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
    [CrossRef]
  10. D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, 1986).
  11. F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
    [CrossRef]
  12. K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
    [CrossRef]
  13. W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
    [CrossRef]
  14. M. A. Jensen and R. H. Selfridge, “Analysis of etching-induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992).
    [CrossRef] [PubMed]

2007 (2)

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
[CrossRef] [PubMed]

2005 (1)

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

2004 (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

2003 (1)

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

2002 (1)

A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, L83 (2002).
[CrossRef]

2001 (2)

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
[CrossRef]

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

2000 (1)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

1999 (1)

F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

1995 (1)

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

1992 (2)

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

M. A. Jensen and R. H. Selfridge, “Analysis of etching-induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992).
[CrossRef] [PubMed]

1986 (1)

D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, 1986).

Andonovic, L.

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Bone, D. J.

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Carter, N.

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Chen, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Chiappetta, M.

F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Dalton, L. R.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Deibel, J. A.

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

Fawcett, G.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Gibson, R.

Gill, M. S.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Harvey, T. G.

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Hau, S.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Hwangbo, S.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

Jen, A. K.-Y.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Jensen, M. A.

Johnstone, W.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Jung, W.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kang, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Katehi, L. P. B.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
[CrossRef]

Kim, E.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kim, K.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kim, K. T.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

Kim, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kvavle, J.

Kwon, H.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Lee, D. L.

D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, 1986).

Lee, S.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Lin, W.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Luo, J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Mah, J. P.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

Marshall, H.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

McCallion, K.

F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Moodie, D.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Nagatsuma, T.

A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, L83 (2002).
[CrossRef]

Pan, F.

F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Pyajt, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Ryan, T. G.

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

Sasaki, A.

A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, L83 (2002).
[CrossRef]

Schaafsma, D.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Schultz, S.

Selfridge, R.

Selfridge, R. H.

Shi, Z.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Skolnick, R.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Sohn, K. R.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

Song, J.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Sun, H.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Thursby, G.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Wang, W. C.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Whitaker, J. F.

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
[CrossRef]

Yang, K.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Pan, K. McCallion, and M. Chiappetta, “Waveguide fabrication and high-speed in-line intensity modulation in 4-N,N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate,” Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Electron. Lett. (1)

G. Fawcett, W. Johnstone, L. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985-986 (1992).
[CrossRef]

IEE Proc. Sci. Meas. Technol. (1)

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fibre optic electric field sensing technique without interruption of the fibre,” IEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164-166(2001).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photonics Technol. Lett. 17, 142-144 (2005).
[CrossRef]

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

IEEE Sens. J. (1)

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, L83 (2002).
[CrossRef]

Opt. Commun. (1)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Opt. Eng. (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband RF receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Opt. Express (1)

Other (2)

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transmission spectrum of an evanescent-coupled fiber showing resonant modes. With a laser input tuned at a midresonant wavelength, output power is subject to shifts from the resonant modes due to the electro-optic effect.

Fig. 2
Fig. 2

Cross section of an optical D-fiber with core-to-waveguide distance d coupled with an overlay slab waveguide of thickness t. Refractive index of the slab and effective index of the fiber are, respectively, n o and n ef . Mode field is highlighted around the core to show its extension into the slab waveguide.

Fig. 3
Fig. 3

Relative linewidths of coupled modes with C a 0 = 1 (solid line), C a 0 = 5 (dot–dashed line), and C a 0 = 25 (dashed line). Weaker coupling requires long interaction between waveguides.

Fig. 4
Fig. 4

At midresonance, a resonant mode exhibits a Δ P change in transmission power with a Δ λ shift in wavelength, related by the slope of the coupled mode S c .

Fig. 5
Fig. 5

Interaction length of (a) an SPF is dependent on the curvature of the polished fiber. Interaction length of (b) a D-fiber device can be made arbitrarily long.

Fig. 6
Fig. 6

125 μm D-fiber with a 2 μm × 4 μm elliptical core located 13 μm from the flat surface. Looped etch in HF removes the cladding at a controlled rate exposing the core of the fiber while leaving its structure intact.

Fig. 7
Fig. 7

Diagram of the D-fiber during the fabrication process including (a) unetched fiber, (b) unetched fiber with mode field displayed, (c) etched D-fiber with evanescent field exposed, and (d) etched fiber coupled to a slab waveguide.

Fig. 8
Fig. 8

SEM image of the D-fiber core region after etching in HF. Depressed cladding of the D-fiber etches faster than the surrounding cladding causing a shallow dip in the cladding at the core region. Fiber core resides 0.7 μm from the surface after 12.3 μm are removed by HF etching. Distance, d, between the core and the placement of the slab waveguide is labeled.

Fig. 9
Fig. 9

Transmission spectrum of an etched D-fiber coupled to a 200 μm -thick LiNbO 3 waveguide. Resonant modes have 17 20 dB transmission dips with Δ λ = 0.12 nm linewidth and 3.55 nm spacing. Resulting Q factor is 13,000 .

Fig. 10
Fig. 10

(Top) Cross section of SCOS between two electrodes with 1 mm spacing used for testing. (Bottom) FFT signal strength of the output transmission of a LiNbO 3 coupled D-fiber electric field sensor for various electric field strengths. Testing shows a high degree of linearity in sensor performance deviating by only 0.1%. FFT signals at points (a), (b), and (c) are shown in Fig. 11.

Fig. 11
Fig. 11

FFT spectrum of a 10 kHz field at three different strengths (see Fig. 10). Spectrum in (a) shows an FFT signal of 0.78 μV from a field of 16 kV , (b) shows a signal of 0.18 μV from a field of 4 kV / m , and (c) shows a signal of 0.044 μV from a field of 1 kV / m . Noise floor of the spectrum analyzer resting at 0.004 μV sets the lower limit of the sensor range and the dielectric breakdown of silica and LiNbO 3 as the upper limit.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 t π m π + ϕ 1 + ϕ 2 n o 2 n ef 2 ,
ϕ i = 1 , 2 = tan 1 ξ ( n ef 2 n i 2 ) 1 / 2 ( n o 2 n ef 2 ) 1 / 2 ,
P a / P 0 = | C a 0 | 2 / ( C 0 a C a 0 + Δ k 2 / 4 ) ,
n 0 λ m = Δ n 0 Δ λ m ,
Δ n 0 = 1 2 n o 3 r x y E ,
Δ λ m = { n 0 3 r x y 2 ( n 0 / λ m ) } E .
P t = P q + S c { n 0 3 r x y 2 ( n 0 / λ m ) } E .
V FFT = c S c { n 0 3 r x y 2 ( n 0 / λ m ) } E FFT ,

Metrics