Abstract

We report a method that uses near-infrared spectroscopy and multivariate analysis to measure the temperature of turbid aqueous solutions. The measurement principle is based on the fact that the peak wavelength of the water absorption band, with its center near 1440nm, shifts with changes in temperature. This principle was used to measure the temperatures of 1mm thick samples of aqueous solutions containing Intralipid (2%), which are often used as optical phantoms for biological tissues due to similar scattering characteristics. Temperatures of pure water and aqueous solutions containing glucose (100mg/ml and 200mg/ml) were also measured for comparison. For the turbid Intralipid solutions, the absorbance spectrum varied irregularly with time due to the change in scattering characteristics. However, by making use of the difference between the absorbance at 1412nm and the temperature- independent absorbance at 1440nm, we obtained SEPs (standard error of prediction) of 0.3°C and 0.2°C by univariate linear regression and partial least squares regression, respectively. These accuracies were almost the same as those for the transparent samples (pure water and glucose solution).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).
  2. Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer 6, C. -L. Tien, ed. (Begell House, 1995), pp. 1-59.
  3. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).
  4. V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
    [CrossRef]
  5. V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
    [CrossRef]
  6. F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
    [CrossRef]
  7. P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc. 57, 28-36 (2003).
    [CrossRef]
  8. S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
    [CrossRef]
  9. H. Cui, L. An, W. Chen, and K. Xu, “Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200 nm to 1700 nm,” Opt. Express 13, 6887-6891(2005).
    [CrossRef]
  10. H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
    [CrossRef]
  11. F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
    [CrossRef]
  12. J. Lin and C. W. Brown, “Near-IR fiber-optic temperature sensor,” Appl. Spectrosc. 47, 62-68 (1993).
    [CrossRef]
  13. S. A. Thompson, F. J. Andrade, and F. A. Inon, “Light emission diode water temperature: a low-cost and noninvasive strategy for monitoring temperature in aqueous solutions,” Appl. Spectrosc. 58, 344-3482004.
    [CrossRef]
  14. E. H. Otal, F. A. Inon, and F. J. Andrade, “Monitoring the temperature of dilute aqueous solutions using near-infrared water absorption,” Appl. Spectrosc. 57, 661-666 (2003).
    [CrossRef]
  15. J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).
  16. A. Ishimaru, Wave Propagations and Scattering in Random Media (Wiley-IEEE Press, 1994).
  17. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J Biomed. Opt. 6, 167-176 (2001).
    [CrossRef]
  18. O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
    [CrossRef]
  19. B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
    [CrossRef]
  20. V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
    [CrossRef]
  21. V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
    [CrossRef]
  22. C. Chen, J. Q. Lu, H. Ding, K. M. Jacobs, Y. Du, and X.-H. Hu, “A primary method for determination of optical parameters of turbid samples and application to Intralipid between 550 and 1630 nm,” Opt. Express 14, 7420-7435 (2006).
    [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).

2007 (1)

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2003 (5)

E. H. Otal, F. A. Inon, and F. J. Andrade, “Monitoring the temperature of dilute aqueous solutions using near-infrared water absorption,” Appl. Spectrosc. 57, 661-666 (2003).
[CrossRef]

P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc. 57, 28-36 (2003).
[CrossRef]

S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
[CrossRef]

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
[CrossRef]

2002 (1)

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

2001 (4)

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
[CrossRef]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J Biomed. Opt. 6, 167-176 (2001).
[CrossRef]

V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
[CrossRef]

1998 (1)

F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
[CrossRef]

1995 (2)

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer 6, C. -L. Tien, ed. (Begell House, 1995), pp. 1-59.

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

1994 (2)

A. Ishimaru, Wave Propagations and Scattering in Random Media (Wiley-IEEE Press, 1994).

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

1993 (1)

1991 (1)

1986 (1)

J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).

1969 (1)

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

An, L.

Andersson-Engels, S.

Andrade, F. J.

Arimoto, H.

H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
[CrossRef]

Bak, J.

Binzoni, T.

V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
[CrossRef]

Bolt, R. A.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Brown, C. W.

Catigny, J. D.

J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).

Chance, B.

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

Chen, C.

Chen, W.

Christy, A. A.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

Cletus, B.

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

Cui, H.

de Mul, F. F.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Delpy, D. T.

V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
[CrossRef]

Ding, H.

Du, Y.

Eisenberg, D.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

Hanna, C. F.

S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
[CrossRef]

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Heise, H. M.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

Hollis, V. S.

V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
[CrossRef]

Hu, X.-H.

Inon, F. A.

Isaksson, T.

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagations and Scattering in Random Media (Wiley-IEEE Press, 1994).

Jacobs, K. M.

Jeng, T.-W.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Jensen, P. S.

Jordan, B.

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

Kanger, J. S.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Kantor, S.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Kauzmann, W.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

Kawata, S.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

Khalil, O. S.

S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
[CrossRef]

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Kitai, T.

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

Kok, W. Th.

F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
[CrossRef]

Kunnemeyer, R.

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

Kvalheim, O. M.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

Langford, V. S.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
[CrossRef]

Libnau, F. O.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

Lin, J.

Liu, H.

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

Lowery, M. G.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Lu, J. Q.

Martinsen, P.

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

McGlone, V. A.

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

McKinley, A. J.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
[CrossRef]

Moes, C. J. M.

Otal, E. H.

Ozaki, Y.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

Prahl, S. A.

Quickenden, T. I.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
[CrossRef]

Sasic, S.

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

Segtnan, V. H.

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

Siesler, H. W.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

Smilde, A. K.

F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
[CrossRef]

Tarumi, M.

H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
[CrossRef]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J Biomed. Opt. 6, 167-176 (2001).
[CrossRef]

Thompson, S. A.

Tien, C. L.

J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).

Toft, J.

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J Biomed. Opt. 6, 167-176 (2001).
[CrossRef]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Wu, X.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

Wulfert, F.

F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
[CrossRef]

Xu, K.

Yamada, Y.

H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
[CrossRef]

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer 6, C. -L. Tien, ed. (Begell House, 1995), pp. 1-59.

J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).

Yeh, S.-j.

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
[CrossRef]

Zhang, Y.

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

Anal. Biochem. (1)

B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
[CrossRef]

Anal. Chem. (2)

F. Wulfert, W. Th. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem. 70, 1761-1767 (1998).
[CrossRef]

V. H. Segtnan, S. Sasic, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem. 73, 3153-3161 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Clin. Chem. (1)

S.-j. Yeh, C. F. Hanna, and O. S. Khalil, “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements,” Clin. Chem. 49, 924-934 (2003).
[CrossRef]

J Biomed. Opt. (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J Biomed. Opt. 6, 167-176 (2001).
[CrossRef]

J. Biomed. Opt. (1)

O. S. Khalil, S.-j. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T.-W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, “Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin,” J. Biomed. Opt. 8, 191-205 (2003).
[CrossRef]

J. Phys. Chem. A (1)

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916-8921(2001).
[CrossRef]

Opt. Express (2)

Opt. Rev. (1)

H. Arimoto, M. Tarumi, and Y. Yamada, “Temperature-insensitive measurement of glucose concentration based on near infrared spectroscopy and partial least squares analysis,” Opt. Rev. 10, 74-76 (2003).
[CrossRef]

Phys. Med. Biol. (1)

V. A. McGlone, P. Martinsen, R. Kunnemeyer, B. Jordan, and B. Cletus, “Measuring optical temperature coefficients of Intralipid,” Phys. Med. Biol. 52, 2367-2378(2007).
[CrossRef]

Proc. SPIE (1)

V. S. Hollis, T. Binzoni, and D. T. Delpy, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Proc. SPIE 4250, 470-481 (2001).
[CrossRef]

Trans. ASME J. Heat Transfer (1)

J. D. Catigny, Y. Yamada, and C. L. Tien, “Radiative transport with dependent scattering by particles, Part 1: Theoretical investigation,” Trans. ASME J. Heat Transfer 108, 608-613(1986).

Vibrat. Spectrosc. (1)

F. O. Libnau, O. M. Kvalheim, A. A. Christy, and J. Toft, “Spectra of water in the near- and mid-infrared region,” Vibrat. Spectrosc. 7, 243-254, 1994.
[CrossRef]

Other (4)

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley-VCH, 2002).

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer 6, C. -L. Tien, ed. (Begell House, 1995), pp. 1-59.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

A. Ishimaru, Wave Propagations and Scattering in Random Media (Wiley-IEEE Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorbance spectra of water at 24.0 ° C , 32.0 ° C , and 40.0 ° C .

Fig. 2
Fig. 2

Absorbance difference spectra of water over the temperature range from 24.0 to 40.0 ° C with 2.0 ° C increments (the absorbance at 24.0 ° C is the reference).

Fig. 3
Fig. 3

Absorbance difference spectra of glucose solutions with glucose concentrations of 100 mg / ml and 200 mg / ml (solid curves) and ideal solutions with the water content of 93.6% and 87.2% (dotted curves) at 24.0 ° C (the absorbance of 100%-water is the reference).

Fig. 4
Fig. 4

Absorbance difference spectra of a glucose solution ( 200 mg / ml ) from 24.0 to 40.0 ° C with 2.0 ° C increments (the absorbance at 24.0 ° C is the reference).

Fig. 5
Fig. 5

Absorbance spectra of Intralipid solutions (2 and 3%) and water at 24.0 ° C (solid curves) and difference spectra (dashed curves) defined by solution spectra minus water spectrum.

Fig. 6
Fig. 6

Absorbance difference spectra of 2%-Intralipid solutions at 24.0 ° C from 0 (reference) to 60   minutes .

Fig. 7
Fig. 7

Absorbance difference spectra of 2%- Intralipid solutions under the temperature cycles: 24.0 ° C for 0 15   minutes , 36.0 ° C for 15 25   minutes , and 24.0 ° C for 25 45   minutes . 0   minutes is the reference.

Fig. 8
Fig. 8

Temporal variations in the absorbances at 1412 nm , 1440 nm , and 1488 nm for 2%-Intralipid solutions under the temperature cycle: 36.0 ° C for 10   minutes and 24.0 ° C for 20   minutes . Each absorbance at 0   minutes is the reference for each of the three wavelengths. Each solid curve is the average over five experiments, and the two dashed curves represent standard deviation.

Fig. 9
Fig. 9

Temporal variations in the absorbance difference at 1412 nm and at 1440 nm for 2%-Intralipid solutions under the temperature cycles: 32.0 ° C , 36.0 ° C , or 40.0 ° C for 10   minutes and 24.0 ° C for 20   minutes . Each absorbance at 0   minutes is the reference. Each solid curve represents the average over five experiments, and the two dashed curves represent standard deviation.

Fig. 10
Fig. 10

Temporal variations in the absorbance at 1412 nm , 1440 nm , and their difference for 2%-Intralipid solutions under 10   minute 2.0 ° C stepwise increases from 24.0 to 40.0 ° C . The absorbance at 0   minutes is the reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( λ , T ) = log 10 [ I s ( λ , T ) / I 0 ( λ )],
Δ A ( λ , T ) = A ( λ , T ) A r ( λ , T ) .
Δ A ( λ , T ) = A ( λ , T ) A ( λ , T r ) = log 10 [ I s ( λ , T ) / I s ( λ , T r )] .

Metrics