Abstract

Semiconductor laser devices based on triangular resonators can provide cheap, compact, and high performance optical sources for optical communications, computing, defense, and biological applications. I modify the original structure by introducing three trenches and analyze their effects on the electro magnetic modes propagating in the triangular cavity. I also analyze the coupling of light into single- mode waveguides. These analyses are conducted by using two-dimensional finite difference time-domain methods. Results show that the introduction of such trenches can considerably reduce the quality factors of most of the modes, but one mode is not significantly degraded, providing nearly single-mode operation. The effects of radiation losses are further investigated by introducing a photonic crystal shielding around the triangular structure. Finally I solve the rate equations to obtain the steady-state response for these structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription