Abstract

A differential absorption lidar (DIAL) system has been developed for the measurement of water vapor throughout the free troposphere [3 to 12km above sea level (asl.)] with high vertical resolution varied from 50m next to the ground to 300m above an altitude of 10km. The system was installed at the Schneefernerhaus high-altitude research station (2675m asl., Zugspitze, Germany). The DIAL system is based on a tunable single-mode laser system with a high pulse energy of currently 250mJ and a repetition rate of 20s1. For lidar operation with energies typically between 100mJ and 150mJ and an integration time of 1000s (10000 laser shots for both DIAL wavelengths) a vertical range of at least 10km has been demonstrated even under dry conditions and during daytime, while daytime measurements up to 12km have been possible under humid conditions. The system was intercompared with radiosondes, which suggests an agreement within 5% in a major part of the operating range. Further improvements are planned in the upper troposphere to approach the accuracy requirements needed in climate research.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. S. Lindzen, “Some coolness concerning global warming,” Bull. Am. Meteorol. Soc. 71, 288-298 (1990).
    [CrossRef]
  2. J. E. Hansen and A. A. Lacis, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
    [CrossRef]
  3. R. S. Lindzen, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
    [CrossRef]
  4. J. E. Harries, “The greenhouse Earth: a view from space,” Q. J. R. Meteorol. Soc. 122, 799-818 (1996).
  5. D.-Z. Sun and I. M. Held, “A Comparison of modeled and observed relationships between interannual variations of water vapor and temperature,” J. Clim. 9, 665-675 (1996).
    [CrossRef]
  6. J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173-2186 (1997).
    [CrossRef]
  7. R. W. Spencer and W. D. Braswell, “How dry is the tropical free troposphere? Implications for global warming theory,” Bull. Am. Meteorol. Soc. 78, 1097-1106 (1997).
    [CrossRef]
  8. A. K. Inamdar and V. Ramanathan, “Tropical and global scale interactions among water vapor atmospheric greenhouse effect and surface temperature,” J. Geophys. Res. 103, 32,177-32,194 (1998).
    [CrossRef]
  9. E. K. Schneider, B. P. Kirtman, and R. S. Lindzen, “Tropospheric water vapor and climate sensitivity,” J. Atmos. Sci. 56, 1649-1658 (1999).
    [CrossRef]
  10. A. Hall and S. Manabe, “The role of water vapor feedback in unperturbed climate variability and global warming,” J. Clim. 12, 2327-2346 (1999).
    [CrossRef]
  11. A. Hall and S. Manabe, “Effect of water vapor on internal and anthropogenic variations of the global hydrologic cycle,” J. Geophys. Res. 105, 6935-6944 (2000).
    [CrossRef]
  12. I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Ann. Rev. Energy Environ. 25, 441-475 (2000).
  13. J. J. Bates, “Variability of tropical upper tropospheric humidity 1979-1998,” J. Geophys. Res. 106, 32,271-32,281 (2001).
    [CrossRef]
  14. E. A. Ray and K. H. Rosenlof, “Hydration of the upper troposphere by tropical cyclones,” J. Geophys. Res. 112, D12311(2007).
    [CrossRef]
  15. P. J. Crutzen, M. G. Lawrence, and U. Pöschl, “On the background photochemistry of tropospheric ozone,” Tellus Ser. A 51, 123-146 (1999).
    [CrossRef]
  16. R. E. Newell, V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco, and H. G. Smit, “Ubiquity of quasi-horizontal layers in the troposphere,” Nature 398, 316-319 (1999).
    [CrossRef]
  17. T. Trickl, O. R. Cooper, H. Eisele, P. James, R. Mücke, and A. Stohl, “Intercontinental transport and its influence on the ozone concentrations over central Europe: three case studies,” J. Geophys. Res. 108, 8530 (2003).
    [CrossRef]
  18. A. Stohl and O. R. Cooper, “A cautionary note on the use of meteorological analysis fields for quantifying atmospheric mixing,” J. Atmos. Sci. 61, 1446-1453 (2004).
    [CrossRef]
  19. Global Atmosphere Watch, “Report of the third session of the EC panel of experts/cas working group on environmental pollution and atmospheric chemistry,” (World Meteorological Organization, 1993), pp. 25.
  20. A. D. Del Genio, A. A. Lacis, and R. A. Ruedy, “Simulations of the effect of a warmer climate on atmospheric humidity,” Nature 351, 382-385 (1991).
    [CrossRef]
  21. K. P. Shine and A. Sinha, “Sensitivity of the Earth's climate to the height-dependent changes in the water vapour mixing ratio,” Nature 354, 382-384 (1991).
    [CrossRef]
  22. “SPARC assessment of the upper tropospheric and stratospheric water vapour,” Report, WMO/TD No. 1043 (World Meteorological Organization, 2000), pp. 312.
  23. W. P. Elliott and D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507-1520 (1991).
    [CrossRef]
  24. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidllin, and D. O. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12 (1995).
    [CrossRef]
  25. S. Pang, H. Graßl, and H. Jäger, “An improved humidity sensor,” J. Atmos. Ocean. Technol. 13, 1110-1115 (1996).
    [CrossRef]
  26. B. J. Soden, D. D. Turner, B. M. Lesht, and L. M. Miloshevich, “An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program,” J. Geophys. Res. 109, D04105(2004).
    [CrossRef]
  27. H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, “Radiation dry bias of the Vaisala RS92 humidity sensor,” J. Atmos. Oceanic Technol. 24, 953-963 (2007).
    [CrossRef]
  28. A. Marenco, V. Thouret, P. Nedelec, H. Smit, M. Helten, D. Kley, F. Karcher, P. Simon, K. Law, J. Pyle, G. Poschmann, R. von Wrede, C. Hume, and T. Cook, “Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview,” J. Geophys. Res. 103, 25,631-25,642 (1998).
    [CrossRef]
  29. F. Solheim and J. R. Godwin, “Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer,” Meteorologische Z. 7, 370-376 (1998).
  30. L. Martin, M. Schneebeli, and C. Mätzler, “Tropospheric water and temperature retrieval for ASMUWARA,” Meteorol. Z. 15, 37-44 (2006).
    [CrossRef]
  31. D. Cimini, T. J. Hewison, L. Martin, J. Güldner, C. Gaffard, and F. S. Marzano, “Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC,” Meteorol. Z. 15, 45-56 (2006).
    [CrossRef]
  32. B. Deuber and N. Kämpfer, “An new 22-GHz radiometer for middle atmospheric water vapor profile measurements,” IEEE Trans. Geosci. Remote Sens. 42, 974-984 (2004).
    [CrossRef]
  33. B. Deuber, A. Haefele, D. G. Feist, L. Martin, N. Kämpfer, G. E. Nedoluha, V. Yushkov, S. Khaykin, R. Kivi, and H. Vömel, “Middle atmospheric water vapour radiometer (MIAWARA): validation and first results of the LAPBIAT upper tropospheric lower stratospheric water vapour validation project (LAUTLOS-WAVVAP) campaign,” J. Geophys. Res. 110, D13306 (2005).
    [CrossRef]
  34. P. Hartogh and C. Jarchow, “Ground-based detection of middle atmospheric water vapor,” Proc. SPIE 2586, 188-195 (1995).
  35. R. Sussmann and C. Camy-Peyret, “Two years of satellite validation at the permanent ground-truthing facility Zugspitze/Garmisch: implementations for AIRS/IASI validation,” (International Ozone Comission, World Meteorological Organization, 2004), Vol. 1, pp. 616-617.
  36. W. Carnuth, U. Kempfer, and T. Trickl, “Highlights of the tropospheric lidar studies at IFU within the TOR project,” Tellus 54B, 163-185 (2002).
  37. H. Eisele, H. E. Scheel, R. Sládkovič, and T. Trickl, “High-resolution lidar measurements of stratosphere-troposphere exchange,” J. Atmos. Sci. 56, 319-330 (1999).
    [CrossRef]
  38. A. Stohl and T. Trickl, “A textbook example of long-range transport: simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe,” J. Geophys. Res. 104, 30,445-30,462 (1999).
    [CrossRef]
  39. C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O'Doherty, S. G. Jennings, C. Kleefeld, J. Schneider, T. Trickl, S. Kreipl, H. Jäger, and A. Stohl, “Transport of boreal forest fire emissions from Canada to Europe,” J. Geophys. Res. 106, 22,887-22,906 (2001).
    [CrossRef]
  40. P. Zanis, T. Trickl, A. Stohl, H. Wernli, O. Cooper, C. Zerefos, H. Gaeggeler, C. Schnabel, L. Tobler, P. W. Kubik, A. Priller, H. E. Scheel, H. J. Kanter, P. Cristofanelli, C. Forster, P. James, E. Gerasopoulos, A. Delcloo, A. Papayannis, and H. Claude, “Forecast, observation and modelling of a deep stratospheric intrusion event over Europe,” Atmos. Chem. Phys. 3, 763-777(2003).
  41. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (U. Michigan, 1966), pp. 273-283.
  42. E. R. Murray, R. D. Hake Jr., J. E. van der Laan, and J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542-543 (1976).
    [CrossRef]
  43. E. V. Browell, T. D. Wilkerson, and T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474-3483 (1979).
  44. E. V. Browell, A. F. Carter, and T. D. Wilkerson, “Airborne differential absorption lidar system for water vapor investigations,” Opt. Eng. 20, 84-90 (1981).
  45. C. Cahen, G. Mégie, and P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506-1515 (1982).
    [CrossRef]
  46. V. V. Zuev, V. E. Zuev, Y. S. Makushkin, V. N. Marichev, and A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742-3746 (1983).
  47. W. B. Grant, J. S. Margolis, A. M. Brothers, and D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033-3042 (1987).
  48. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991), pp. 37.
  49. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534-4551 (1993).
  50. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossman, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422-6438 (1994).
  51. C. Senff, J. Bösenberg, and G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar an radar-RASS,” J. Atmos. Ocean. Technol. 11, 85-93 (1994).
    [CrossRef]
  52. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)--an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 281-288.
  53. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).
  54. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399-410 (1998).
  55. D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450-3460 (2001).
    [CrossRef]
  56. D. Bruneau, P. Quaglia, C. Flamant, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462-3475 (2001).
    [CrossRef]
  57. L. M. Little and G. C. Papen, “Fiber-based lidar atmospheric water-vapor measurements,” Appl. Opt. 40, 3417-3427 (2001).
    [CrossRef]
  58. C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and O. Uchino, “Developement of airborne DIAL for water vapor measurement,” in Lidar Remote Sensing for Industry and Environment Monitoring--Proceedings of SPIE--The International Society for Optical Engineering, U. N. Singh, T. Itabe, and N. Sugimoto, eds. (2001), Vol. 4153, pp. 599-606.
  59. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165-172 (2002).
    [CrossRef]
  60. K. Ertel, “Application and development of water vapor DIAL systems,” Ph.D. Dissertation (in English) (Universität Hamburg, 2004), pp. 128.
  61. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110-3121 (2004).
    [CrossRef]
  62. H. Flentje, A. Dörnbrack, G. Ehret, A. Fix, C. Kiemle, G. Poberaj, and M. Wirth, “Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar,” J. Geophys. Res. 110, D03115(2005).
    [CrossRef]
  63. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120-5126(2005).
    [CrossRef]
  64. H. Linné, B. Hennemuth, J. Bösenberg, and K. Ertel, “Water vapour flux profiles in the convective boundary layer,” Theor. Appl. Climatol. 87, 201-211 (2006).
  65. G. Sachse, L. Wang, C. Antill, S. Ismail, and E. V. Browell, “Line-center/side-line diode laser seeding for DIAL measurements of the atmosphere,” in Optical Remote Sensing of the Atmosphere (Optical Society of America, 1995), pp. 289-295.
  66. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, and D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 289-295.
  67. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, and G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351-31360 (1999).
    [CrossRef]
  68. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, S. Ismail, R. A. Ferrare, S. A. Kooi, V. G. Brackett, M. B. Clayton, M. A. Avery, J. D. W. Barrick, H. E. Fuelberg, J. C. Maloney, R. E. Newell, Y. Zhu, M. J. Mahoney, B. E. Anderson, D. R. Blake, W. H. Brune, B. G. Heikes, G. W. Sachse, H. B. Singh, and R. W. Talbot, “Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: results from PEM-Tropics B field experiment,” J. Geophys. Res. 106, 32,481-32,502 (2001).
    [CrossRef]
  69. T. Trickl and H. Vogelmann, “Wide-range vertical sounding of free-tropospheric water vapour: The first two years of operation of the Zugspitze differential-absorption lidar,” in Reviewed and Revised Papers Presented at the 23rd International Laser and Radar Conference, Part II, C. Nagasawa and N. Sugimoto, eds. (University of Tokyo, 2006), pp. 687-690.
  70. LOWTRAN 5 model (1989), ONTAR Corporation, 9 Village Way, North Andover, MA 01845-2000 USA.
  71. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
    [CrossRef]
  72. VDI guide line 4210, Remote sensing, Atmospoheric measurements with LIDAR, Measuring gaseous air pollution with the DAS LIDAR (Verein Deutscher Ingenieure, 1999), pp. 47.
  73. P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58-70 (1997).
    [CrossRef]
  74. H. Jäger, P. James, S. Kreipl, A. Stohl, and T. Trickl, “Long-range transport and its impact on the vertical distribution of trace constituents in the central European free troposphere,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, and B. Warmbein, eds. (ESA Publications Division, 2004), pp. 679-682.
  75. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 1 S1 ground state of helium,” Phys. Rev. A 55, 1866-1884 (1997).
    [CrossRef]
  76. T. Trickl, A. H. Kung, and Y. T. Lee, “Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy,” Phys. Rev. A 75, 022501 (2007).
    [CrossRef]
  77. H. Vogelmann, “Entwicklung und Aufbau eines Hochleistungs-Wasserdampf-LIDAR-Systems auf der Zugspitze,” Ph.D. Dissertation (in German) (Universität Augsburg, 2006).
  78. W. R. Bosenberg and D. R. Guyer, “Broadly tunable, single-frequency optical parametric freqency-conversion system,” J. Opt. Soc. Am. B 10, 1716-1722 (1993).
  79. K. Grützmacher and A. Steiger (personal communication, 1998).
  80. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor temperature-profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804-3824 (1998).
  81. A. H. Kung, “Regenerative amplification of a single-frequency optical parametric oscillator,” Opt. Lett. 18, 2017-2019 (1993).
  82. A. Hoffstädt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850-1863 (1997).
    [CrossRef]
  83. A. Hoffstädt, “Physikalische und technische Grundlagen von lampengepumpten Hochleitungs-Ti:Saphir-Laser-Oszillatoren und -Verstärkern,” Ph.D. Dissertation (in German) (Technische Universität Berlin, 1995), pp. 197.
  84. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845-3860 (1998).
  85. P. Brenner, O. Reitebuch, K. Schäfer, and T. Trickl, “A novel mobile vertical-sounding system for ozone studies in the lower troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, P. R. A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 383-386 Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22-26 July 1996.
  86. A. Ansmann and J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026-3032(1987).
  87. G. Fiocco and J. B. De Wolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air.” J. Atmos. Sci. 25, 488-496 (1968).
    [CrossRef]
  88. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of the temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78-79 (1971).
  89. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
  90. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).
  91. H. Eisele and T. Trickl, “Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies,” Appl. Opt. 44, 2638-2651 (2005).
    [CrossRef]
  92. U. Kempfer, “Entwicklung und Anwendung eines differentiellen Absorptions-LIDAR-Systems zur Messung der troposphärischen Ozonkonzentration,” Ph.D. Dissertation (in German), pp. 151 (Ludwig-Maximilians-Univeristät München, 1992).
  93. U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145-3164 (1994).
    [CrossRef]
  94. D. Sonntag and D. Heinze, Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis (in German), 1st ed. (VEB Deutscher Verlag für Grundstoffindustrie, 1982).
  95. G. Pappalardo, “Aerosol lidar ratio measurements in the framework of EARLINET,” Geophys. Abstracts 7, 4 (2005).
  96. H. Jäger, “Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen,” J. Geophys. Res. 1109 (2005).
  97. A. Burger and E. Ekhart, “Über die tägliche Zirkulation im Bereiche der Alpen,” Gerl. Beitr. Geophys. 49, 341-367 (1937).
  98. I. Vergeiner and E. Dreiseitl, “Valley winds and slope winds--observations and elementary thoughts,” Meteorol. Atmos. Phys. 36, 264-286 (1987).
    [CrossRef]
  99. M. Furger, J. Dommen, W. K. Graber, L. Poggio, A. Prévôt, S. Emeis, G. Grell, T. Trickl, B. Gomiscek, B. Neininger, and G. Wotawa, “The VOTALP Mesolcina Valley Campaign 1996--Concept, background and some highlights,” Atmos. Environ. 34, 1395-1412 (2000).
    [CrossRef]
  100. W. Carnuth and T. Trickl, “Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment,” Atmospheric Environment 34, 1425-14 (2000).
    [CrossRef]
  101. S. Kreipl, “Messung des aerosoltransports am alpennordrand mittels laserradar (lidar),” Ph.D. Dissertation (in German) (Universität Erlangen, 2006) pp. 195.
  102. R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295-308 (1998) http://www.arl.noaa.gov/ready/hysplit4.html.
  103. VOTALP II, Vertical Ozone Transport in the Alps II, Final Report for the European Union, Contract No.: ENV4 CT970413, H.Kromp-Kolb, Coordinator, pp. 96 (Universität für Bodenkultur, Wien, Austria, 2000).
  104. L. M. Miloshevich, H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, “Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation,” J. Geophys. Res. 111, D09S10 (2006).
    [CrossRef]
  105. J. R. Wang, P. Racette, M. E. Triesky, E. V. Browell, S. Ismail, and L. A. Chang, “Profiling of atmospheric water vapor with MIR and LASE,” IEEE Trans. Geosci. Remote Sen. 40, 1-9 (2002).
  106. L. S. Rothmann, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database, edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).
  107. R. A. Toth, “Measurements of H216O line positions and strengths: 11610 to 12861 cm−1,” J. Mol. Spectrosc. 166, 176-183 (1994).
    [CrossRef]
  108. M.-F. Mérienne, A. Jenouvrier, C. Hermans, M. C. A. C. Vandaele, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water vapor line parameters in the 13000-9250 cm−1 region,” J. Quant. Spectrosc. Radiat. Transfer 82, 99-117 (2003).
    [CrossRef]

2007 (3)

E. A. Ray and K. H. Rosenlof, “Hydration of the upper troposphere by tropical cyclones,” J. Geophys. Res. 112, D12311(2007).
[CrossRef]

H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, “Radiation dry bias of the Vaisala RS92 humidity sensor,” J. Atmos. Oceanic Technol. 24, 953-963 (2007).
[CrossRef]

T. Trickl, A. H. Kung, and Y. T. Lee, “Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy,” Phys. Rev. A 75, 022501 (2007).
[CrossRef]

2006 (4)

H. Linné, B. Hennemuth, J. Bösenberg, and K. Ertel, “Water vapour flux profiles in the convective boundary layer,” Theor. Appl. Climatol. 87, 201-211 (2006).

L. M. Miloshevich, H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, “Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation,” J. Geophys. Res. 111, D09S10 (2006).
[CrossRef]

L. Martin, M. Schneebeli, and C. Mätzler, “Tropospheric water and temperature retrieval for ASMUWARA,” Meteorol. Z. 15, 37-44 (2006).
[CrossRef]

D. Cimini, T. J. Hewison, L. Martin, J. Güldner, C. Gaffard, and F. S. Marzano, “Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC,” Meteorol. Z. 15, 45-56 (2006).
[CrossRef]

2005 (6)

B. Deuber, A. Haefele, D. G. Feist, L. Martin, N. Kämpfer, G. E. Nedoluha, V. Yushkov, S. Khaykin, R. Kivi, and H. Vömel, “Middle atmospheric water vapour radiometer (MIAWARA): validation and first results of the LAPBIAT upper tropospheric lower stratospheric water vapour validation project (LAUTLOS-WAVVAP) campaign,” J. Geophys. Res. 110, D13306 (2005).
[CrossRef]

G. Pappalardo, “Aerosol lidar ratio measurements in the framework of EARLINET,” Geophys. Abstracts 7, 4 (2005).

H. Jäger, “Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen,” J. Geophys. Res. 1109 (2005).

H. Flentje, A. Dörnbrack, G. Ehret, A. Fix, C. Kiemle, G. Poberaj, and M. Wirth, “Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar,” J. Geophys. Res. 110, D03115(2005).
[CrossRef]

H. Eisele and T. Trickl, “Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies,” Appl. Opt. 44, 2638-2651 (2005).
[CrossRef]

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120-5126(2005).
[CrossRef]

2004 (4)

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110-3121 (2004).
[CrossRef]

B. Deuber and N. Kämpfer, “An new 22-GHz radiometer for middle atmospheric water vapor profile measurements,” IEEE Trans. Geosci. Remote Sens. 42, 974-984 (2004).
[CrossRef]

B. J. Soden, D. D. Turner, B. M. Lesht, and L. M. Miloshevich, “An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program,” J. Geophys. Res. 109, D04105(2004).
[CrossRef]

A. Stohl and O. R. Cooper, “A cautionary note on the use of meteorological analysis fields for quantifying atmospheric mixing,” J. Atmos. Sci. 61, 1446-1453 (2004).
[CrossRef]

2003 (4)

T. Trickl, O. R. Cooper, H. Eisele, P. James, R. Mücke, and A. Stohl, “Intercontinental transport and its influence on the ozone concentrations over central Europe: three case studies,” J. Geophys. Res. 108, 8530 (2003).
[CrossRef]

P. Zanis, T. Trickl, A. Stohl, H. Wernli, O. Cooper, C. Zerefos, H. Gaeggeler, C. Schnabel, L. Tobler, P. W. Kubik, A. Priller, H. E. Scheel, H. J. Kanter, P. Cristofanelli, C. Forster, P. James, E. Gerasopoulos, A. Delcloo, A. Papayannis, and H. Claude, “Forecast, observation and modelling of a deep stratospheric intrusion event over Europe,” Atmos. Chem. Phys. 3, 763-777(2003).

L. S. Rothmann, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database, edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).

M.-F. Mérienne, A. Jenouvrier, C. Hermans, M. C. A. C. Vandaele, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water vapor line parameters in the 13000-9250 cm−1 region,” J. Quant. Spectrosc. Radiat. Transfer 82, 99-117 (2003).
[CrossRef]

2002 (3)

J. R. Wang, P. Racette, M. E. Triesky, E. V. Browell, S. Ismail, and L. A. Chang, “Profiling of atmospheric water vapor with MIR and LASE,” IEEE Trans. Geosci. Remote Sen. 40, 1-9 (2002).

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165-172 (2002).
[CrossRef]

W. Carnuth, U. Kempfer, and T. Trickl, “Highlights of the tropospheric lidar studies at IFU within the TOR project,” Tellus 54B, 163-185 (2002).

2001 (7)

C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O'Doherty, S. G. Jennings, C. Kleefeld, J. Schneider, T. Trickl, S. Kreipl, H. Jäger, and A. Stohl, “Transport of boreal forest fire emissions from Canada to Europe,” J. Geophys. Res. 106, 22,887-22,906 (2001).
[CrossRef]

J. J. Bates, “Variability of tropical upper tropospheric humidity 1979-1998,” J. Geophys. Res. 106, 32,271-32,281 (2001).
[CrossRef]

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, S. Ismail, R. A. Ferrare, S. A. Kooi, V. G. Brackett, M. B. Clayton, M. A. Avery, J. D. W. Barrick, H. E. Fuelberg, J. C. Maloney, R. E. Newell, Y. Zhu, M. J. Mahoney, B. E. Anderson, D. R. Blake, W. H. Brune, B. G. Heikes, G. W. Sachse, H. B. Singh, and R. W. Talbot, “Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: results from PEM-Tropics B field experiment,” J. Geophys. Res. 106, 32,481-32,502 (2001).
[CrossRef]

L. M. Little and G. C. Papen, “Fiber-based lidar atmospheric water-vapor measurements,” Appl. Opt. 40, 3417-3427 (2001).
[CrossRef]

D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450-3460 (2001).
[CrossRef]

D. Bruneau, P. Quaglia, C. Flamant, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462-3475 (2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
[CrossRef]

2000 (4)

M. Furger, J. Dommen, W. K. Graber, L. Poggio, A. Prévôt, S. Emeis, G. Grell, T. Trickl, B. Gomiscek, B. Neininger, and G. Wotawa, “The VOTALP Mesolcina Valley Campaign 1996--Concept, background and some highlights,” Atmos. Environ. 34, 1395-1412 (2000).
[CrossRef]

W. Carnuth and T. Trickl, “Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment,” Atmospheric Environment 34, 1425-14 (2000).
[CrossRef]

A. Hall and S. Manabe, “Effect of water vapor on internal and anthropogenic variations of the global hydrologic cycle,” J. Geophys. Res. 105, 6935-6944 (2000).
[CrossRef]

I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Ann. Rev. Energy Environ. 25, 441-475 (2000).

1999 (7)

E. K. Schneider, B. P. Kirtman, and R. S. Lindzen, “Tropospheric water vapor and climate sensitivity,” J. Atmos. Sci. 56, 1649-1658 (1999).
[CrossRef]

A. Hall and S. Manabe, “The role of water vapor feedback in unperturbed climate variability and global warming,” J. Clim. 12, 2327-2346 (1999).
[CrossRef]

P. J. Crutzen, M. G. Lawrence, and U. Pöschl, “On the background photochemistry of tropospheric ozone,” Tellus Ser. A 51, 123-146 (1999).
[CrossRef]

R. E. Newell, V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco, and H. G. Smit, “Ubiquity of quasi-horizontal layers in the troposphere,” Nature 398, 316-319 (1999).
[CrossRef]

H. Eisele, H. E. Scheel, R. Sládkovič, and T. Trickl, “High-resolution lidar measurements of stratosphere-troposphere exchange,” J. Atmos. Sci. 56, 319-330 (1999).
[CrossRef]

A. Stohl and T. Trickl, “A textbook example of long-range transport: simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe,” J. Geophys. Res. 104, 30,445-30,462 (1999).
[CrossRef]

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, and G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351-31360 (1999).
[CrossRef]

1998 (8)

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399-410 (1998).

R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295-308 (1998) http://www.arl.noaa.gov/ready/hysplit4.html.

A. Marenco, V. Thouret, P. Nedelec, H. Smit, M. Helten, D. Kley, F. Karcher, P. Simon, K. Law, J. Pyle, G. Poschmann, R. von Wrede, C. Hume, and T. Cook, “Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview,” J. Geophys. Res. 103, 25,631-25,642 (1998).
[CrossRef]

F. Solheim and J. R. Godwin, “Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer,” Meteorologische Z. 7, 370-376 (1998).

A. K. Inamdar and V. Ramanathan, “Tropical and global scale interactions among water vapor atmospheric greenhouse effect and surface temperature,” J. Geophys. Res. 103, 32,177-32,194 (1998).
[CrossRef]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor temperature-profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804-3824 (1998).

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845-3860 (1998).

1997 (5)

J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173-2186 (1997).
[CrossRef]

R. W. Spencer and W. D. Braswell, “How dry is the tropical free troposphere? Implications for global warming theory,” Bull. Am. Meteorol. Soc. 78, 1097-1106 (1997).
[CrossRef]

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58-70 (1997).
[CrossRef]

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 1 S1 ground state of helium,” Phys. Rev. A 55, 1866-1884 (1997).
[CrossRef]

A. Hoffstädt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850-1863 (1997).
[CrossRef]

1996 (3)

J. E. Harries, “The greenhouse Earth: a view from space,” Q. J. R. Meteorol. Soc. 122, 799-818 (1996).

D.-Z. Sun and I. M. Held, “A Comparison of modeled and observed relationships between interannual variations of water vapor and temperature,” J. Clim. 9, 665-675 (1996).
[CrossRef]

S. Pang, H. Graßl, and H. Jäger, “An improved humidity sensor,” J. Atmos. Ocean. Technol. 13, 1110-1115 (1996).
[CrossRef]

1995 (2)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidllin, and D. O. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12 (1995).
[CrossRef]

P. Hartogh and C. Jarchow, “Ground-based detection of middle atmospheric water vapor,” Proc. SPIE 2586, 188-195 (1995).

1994 (4)

U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145-3164 (1994).
[CrossRef]

C. Senff, J. Bösenberg, and G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar an radar-RASS,” J. Atmos. Ocean. Technol. 11, 85-93 (1994).
[CrossRef]

R. A. Toth, “Measurements of H216O line positions and strengths: 11610 to 12861 cm−1,” J. Mol. Spectrosc. 166, 176-183 (1994).
[CrossRef]

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossman, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422-6438 (1994).

1993 (3)

1991 (5)

A. D. Del Genio, A. A. Lacis, and R. A. Ruedy, “Simulations of the effect of a warmer climate on atmospheric humidity,” Nature 351, 382-385 (1991).
[CrossRef]

K. P. Shine and A. Sinha, “Sensitivity of the Earth's climate to the height-dependent changes in the water vapour mixing ratio,” Nature 354, 382-384 (1991).
[CrossRef]

W. P. Elliott and D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507-1520 (1991).
[CrossRef]

J. E. Hansen and A. A. Lacis, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
[CrossRef]

R. S. Lindzen, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
[CrossRef]

1990 (1)

R. S. Lindzen, “Some coolness concerning global warming,” Bull. Am. Meteorol. Soc. 71, 288-298 (1990).
[CrossRef]

1987 (3)

1985 (1)

1983 (1)

1982 (1)

C. Cahen, G. Mégie, and P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506-1515 (1982).
[CrossRef]

1981 (2)

E. V. Browell, A. F. Carter, and T. D. Wilkerson, “Airborne differential absorption lidar system for water vapor investigations,” Opt. Eng. 20, 84-90 (1981).

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).

1979 (1)

1976 (1)

E. R. Murray, R. D. Hake Jr., J. E. van der Laan, and J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542-543 (1976).
[CrossRef]

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of the temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78-79 (1971).

1968 (1)

G. Fiocco and J. B. De Wolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air.” J. Atmos. Sci. 25, 488-496 (1968).
[CrossRef]

1937 (1)

A. Burger and E. Ekhart, “Über die tägliche Zirkulation im Bereiche der Alpen,” Gerl. Beitr. Geophys. 49, 341-367 (1937).

Ann. Rev. Energy Environ. (1)

I. M. Held and B. J. Soden, “Water vapor feedback and global warming,” Ann. Rev. Energy Environ. 25, 441-475 (2000).

Appl. Opt. (18)

E. V. Browell, T. D. Wilkerson, and T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474-3483 (1979).

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).

V. V. Zuev, V. E. Zuev, Y. S. Makushkin, V. N. Marichev, and A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742-3746 (1983).

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).

W. B. Grant, J. S. Margolis, A. M. Brothers, and D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033-3042 (1987).

G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534-4551 (1993).

N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossman, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422-6438 (1994).

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor temperature-profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804-3824 (1998).

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845-3860 (1998).

A. Ansmann and J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026-3032(1987).

L. M. Little and G. C. Papen, “Fiber-based lidar atmospheric water-vapor measurements,” Appl. Opt. 40, 3417-3427 (2001).
[CrossRef]

D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450-3460 (2001).
[CrossRef]

D. Bruneau, P. Quaglia, C. Flamant, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462-3475 (2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
[CrossRef]

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110-3121 (2004).
[CrossRef]

H. Eisele and T. Trickl, “Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies,” Appl. Opt. 44, 2638-2651 (2005).
[CrossRef]

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120-5126(2005).
[CrossRef]

Appl. Phys. B (2)

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165-172 (2002).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399-410 (1998).

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake Jr., J. E. van der Laan, and J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542-543 (1976).
[CrossRef]

Atmos. Chem. Phys. (1)

P. Zanis, T. Trickl, A. Stohl, H. Wernli, O. Cooper, C. Zerefos, H. Gaeggeler, C. Schnabel, L. Tobler, P. W. Kubik, A. Priller, H. E. Scheel, H. J. Kanter, P. Cristofanelli, C. Forster, P. James, E. Gerasopoulos, A. Delcloo, A. Papayannis, and H. Claude, “Forecast, observation and modelling of a deep stratospheric intrusion event over Europe,” Atmos. Chem. Phys. 3, 763-777(2003).

Atmos. Environ. (1)

M. Furger, J. Dommen, W. K. Graber, L. Poggio, A. Prévôt, S. Emeis, G. Grell, T. Trickl, B. Gomiscek, B. Neininger, and G. Wotawa, “The VOTALP Mesolcina Valley Campaign 1996--Concept, background and some highlights,” Atmos. Environ. 34, 1395-1412 (2000).
[CrossRef]

Atmospheric Environment (1)

W. Carnuth and T. Trickl, “Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment,” Atmospheric Environment 34, 1425-14 (2000).
[CrossRef]

Aust. Meteorol. Mag. (1)

R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295-308 (1998) http://www.arl.noaa.gov/ready/hysplit4.html.

Bull. Am. Meteorol. Soc. (3)

R. S. Lindzen, “Some coolness concerning global warming,” Bull. Am. Meteorol. Soc. 71, 288-298 (1990).
[CrossRef]

R. W. Spencer and W. D. Braswell, “How dry is the tropical free troposphere? Implications for global warming theory,” Bull. Am. Meteorol. Soc. 78, 1097-1106 (1997).
[CrossRef]

W. P. Elliott and D. J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507-1520 (1991).
[CrossRef]

Geophys. Abstracts (1)

G. Pappalardo, “Aerosol lidar ratio measurements in the framework of EARLINET,” Geophys. Abstracts 7, 4 (2005).

Gerl. Beitr. Geophys. (1)

A. Burger and E. Ekhart, “Über die tägliche Zirkulation im Bereiche der Alpen,” Gerl. Beitr. Geophys. 49, 341-367 (1937).

IEEE J. Quantum Electron. (1)

A. Hoffstädt, “Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850-1863 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sen. (1)

J. R. Wang, P. Racette, M. E. Triesky, E. V. Browell, S. Ismail, and L. A. Chang, “Profiling of atmospheric water vapor with MIR and LASE,” IEEE Trans. Geosci. Remote Sen. 40, 1-9 (2002).

IEEE Trans. Geosci. Remote Sens. (1)

B. Deuber and N. Kämpfer, “An new 22-GHz radiometer for middle atmospheric water vapor profile measurements,” IEEE Trans. Geosci. Remote Sens. 42, 974-984 (2004).
[CrossRef]

J. Appl. Meteorol. (1)

C. Cahen, G. Mégie, and P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506-1515 (1982).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

C. Senff, J. Bösenberg, and G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar an radar-RASS,” J. Atmos. Ocean. Technol. 11, 85-93 (1994).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidllin, and D. O. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12 (1995).
[CrossRef]

S. Pang, H. Graßl, and H. Jäger, “An improved humidity sensor,” J. Atmos. Ocean. Technol. 13, 1110-1115 (1996).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

H. Vömel, H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz, “Radiation dry bias of the Vaisala RS92 humidity sensor,” J. Atmos. Oceanic Technol. 24, 953-963 (2007).
[CrossRef]

J. Atmos. Sci. (4)

A. Stohl and O. R. Cooper, “A cautionary note on the use of meteorological analysis fields for quantifying atmospheric mixing,” J. Atmos. Sci. 61, 1446-1453 (2004).
[CrossRef]

E. K. Schneider, B. P. Kirtman, and R. S. Lindzen, “Tropospheric water vapor and climate sensitivity,” J. Atmos. Sci. 56, 1649-1658 (1999).
[CrossRef]

H. Eisele, H. E. Scheel, R. Sládkovič, and T. Trickl, “High-resolution lidar measurements of stratosphere-troposphere exchange,” J. Atmos. Sci. 56, 319-330 (1999).
[CrossRef]

G. Fiocco and J. B. De Wolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air.” J. Atmos. Sci. 25, 488-496 (1968).
[CrossRef]

J. Clim. (2)

A. Hall and S. Manabe, “The role of water vapor feedback in unperturbed climate variability and global warming,” J. Clim. 12, 2327-2346 (1999).
[CrossRef]

D.-Z. Sun and I. M. Held, “A Comparison of modeled and observed relationships between interannual variations of water vapor and temperature,” J. Clim. 9, 665-675 (1996).
[CrossRef]

J. Geophys. Res. (15)

A. K. Inamdar and V. Ramanathan, “Tropical and global scale interactions among water vapor atmospheric greenhouse effect and surface temperature,” J. Geophys. Res. 103, 32,177-32,194 (1998).
[CrossRef]

A. Hall and S. Manabe, “Effect of water vapor on internal and anthropogenic variations of the global hydrologic cycle,” J. Geophys. Res. 105, 6935-6944 (2000).
[CrossRef]

T. Trickl, O. R. Cooper, H. Eisele, P. James, R. Mücke, and A. Stohl, “Intercontinental transport and its influence on the ozone concentrations over central Europe: three case studies,” J. Geophys. Res. 108, 8530 (2003).
[CrossRef]

J. J. Bates, “Variability of tropical upper tropospheric humidity 1979-1998,” J. Geophys. Res. 106, 32,271-32,281 (2001).
[CrossRef]

E. A. Ray and K. H. Rosenlof, “Hydration of the upper troposphere by tropical cyclones,” J. Geophys. Res. 112, D12311(2007).
[CrossRef]

B. J. Soden, D. D. Turner, B. M. Lesht, and L. M. Miloshevich, “An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program,” J. Geophys. Res. 109, D04105(2004).
[CrossRef]

A. Marenco, V. Thouret, P. Nedelec, H. Smit, M. Helten, D. Kley, F. Karcher, P. Simon, K. Law, J. Pyle, G. Poschmann, R. von Wrede, C. Hume, and T. Cook, “Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview,” J. Geophys. Res. 103, 25,631-25,642 (1998).
[CrossRef]

B. Deuber, A. Haefele, D. G. Feist, L. Martin, N. Kämpfer, G. E. Nedoluha, V. Yushkov, S. Khaykin, R. Kivi, and H. Vömel, “Middle atmospheric water vapour radiometer (MIAWARA): validation and first results of the LAPBIAT upper tropospheric lower stratospheric water vapour validation project (LAUTLOS-WAVVAP) campaign,” J. Geophys. Res. 110, D13306 (2005).
[CrossRef]

A. Stohl and T. Trickl, “A textbook example of long-range transport: simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe,” J. Geophys. Res. 104, 30,445-30,462 (1999).
[CrossRef]

C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O'Doherty, S. G. Jennings, C. Kleefeld, J. Schneider, T. Trickl, S. Kreipl, H. Jäger, and A. Stohl, “Transport of boreal forest fire emissions from Canada to Europe,” J. Geophys. Res. 106, 22,887-22,906 (2001).
[CrossRef]

H. Flentje, A. Dörnbrack, G. Ehret, A. Fix, C. Kiemle, G. Poberaj, and M. Wirth, “Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar,” J. Geophys. Res. 110, D03115(2005).
[CrossRef]

H. Jäger, “Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen,” J. Geophys. Res. 1109 (2005).

G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, and G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31351-31360 (1999).
[CrossRef]

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, S. Ismail, R. A. Ferrare, S. A. Kooi, V. G. Brackett, M. B. Clayton, M. A. Avery, J. D. W. Barrick, H. E. Fuelberg, J. C. Maloney, R. E. Newell, Y. Zhu, M. J. Mahoney, B. E. Anderson, D. R. Blake, W. H. Brune, B. G. Heikes, G. W. Sachse, H. B. Singh, and R. W. Talbot, “Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: results from PEM-Tropics B field experiment,” J. Geophys. Res. 106, 32,481-32,502 (2001).
[CrossRef]

L. M. Miloshevich, H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, “Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation,” J. Geophys. Res. 111, D09S10 (2006).
[CrossRef]

J. Mol. Spectrosc. (2)

R. A. Toth, “Measurements of H216O line positions and strengths: 11610 to 12861 cm−1,” J. Mol. Spectrosc. 166, 176-183 (1994).
[CrossRef]

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58-70 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

M.-F. Mérienne, A. Jenouvrier, C. Hermans, M. C. A. C. Vandaele, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, “Water vapor line parameters in the 13000-9250 cm−1 region,” J. Quant. Spectrosc. Radiat. Transfer 82, 99-117 (2003).
[CrossRef]

Meteorol. Atmos. Phys. (1)

I. Vergeiner and E. Dreiseitl, “Valley winds and slope winds--observations and elementary thoughts,” Meteorol. Atmos. Phys. 36, 264-286 (1987).
[CrossRef]

Meteorol. Z. (2)

L. Martin, M. Schneebeli, and C. Mätzler, “Tropospheric water and temperature retrieval for ASMUWARA,” Meteorol. Z. 15, 37-44 (2006).
[CrossRef]

D. Cimini, T. J. Hewison, L. Martin, J. Güldner, C. Gaffard, and F. S. Marzano, “Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC,” Meteorol. Z. 15, 45-56 (2006).
[CrossRef]

Meteorologische Z. (1)

F. Solheim and J. R. Godwin, “Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer,” Meteorologische Z. 7, 370-376 (1998).

Nature (6)

A. D. Del Genio, A. A. Lacis, and R. A. Ruedy, “Simulations of the effect of a warmer climate on atmospheric humidity,” Nature 351, 382-385 (1991).
[CrossRef]

K. P. Shine and A. Sinha, “Sensitivity of the Earth's climate to the height-dependent changes in the water vapour mixing ratio,” Nature 354, 382-384 (1991).
[CrossRef]

R. E. Newell, V. Thouret, J. Y. N. Cho, P. Stoller, A. Marenco, and H. G. Smit, “Ubiquity of quasi-horizontal layers in the troposphere,” Nature 398, 316-319 (1999).
[CrossRef]

J. E. Hansen and A. A. Lacis, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
[CrossRef]

R. S. Lindzen, “Sun and water in the greenhouse,” Nature 349, 467 (1991).
[CrossRef]

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of the temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78-79 (1971).

Opt. Eng. (1)

E. V. Browell, A. F. Carter, and T. D. Wilkerson, “Airborne differential absorption lidar system for water vapor investigations,” Opt. Eng. 20, 84-90 (1981).

Opt. Lett. (1)

Phys. Rev. A (2)

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 1 S1 ground state of helium,” Phys. Rev. A 55, 1866-1884 (1997).
[CrossRef]

T. Trickl, A. H. Kung, and Y. T. Lee, “Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy,” Phys. Rev. A 75, 022501 (2007).
[CrossRef]

Proc. SPIE (1)

P. Hartogh and C. Jarchow, “Ground-based detection of middle atmospheric water vapor,” Proc. SPIE 2586, 188-195 (1995).

Q. J. R. Meteorol. Soc. (2)

J. E. Harries, “The greenhouse Earth: a view from space,” Q. J. R. Meteorol. Soc. 122, 799-818 (1996).

J. E. Harries, “Atmospheric radiation and atmospheric humidity,” Q. J. R. Meteorol. Soc. 123, 2173-2186 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145-3164 (1994).
[CrossRef]

Tellus (1)

W. Carnuth, U. Kempfer, and T. Trickl, “Highlights of the tropospheric lidar studies at IFU within the TOR project,” Tellus 54B, 163-185 (2002).

Tellus Ser. A (1)

P. J. Crutzen, M. G. Lawrence, and U. Pöschl, “On the background photochemistry of tropospheric ozone,” Tellus Ser. A 51, 123-146 (1999).
[CrossRef]

Theor. Appl. Climatol. (1)

H. Linné, B. Hennemuth, J. Bösenberg, and K. Ertel, “Water vapour flux profiles in the convective boundary layer,” Theor. Appl. Climatol. 87, 201-211 (2006).

Other (23)

G. Sachse, L. Wang, C. Antill, S. Ismail, and E. V. Browell, “Line-center/side-line diode laser seeding for DIAL measurements of the atmosphere,” in Optical Remote Sensing of the Atmosphere (Optical Society of America, 1995), pp. 289-295.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, and D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 289-295.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)--an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 281-288.

C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and O. Uchino, “Developement of airborne DIAL for water vapor measurement,” in Lidar Remote Sensing for Industry and Environment Monitoring--Proceedings of SPIE--The International Society for Optical Engineering, U. N. Singh, T. Itabe, and N. Sugimoto, eds. (2001), Vol. 4153, pp. 599-606.

K. Ertel, “Application and development of water vapor DIAL systems,” Ph.D. Dissertation (in English) (Universität Hamburg, 2004), pp. 128.

J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991), pp. 37.

R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (U. Michigan, 1966), pp. 273-283.

D. Sonntag and D. Heinze, Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis (in German), 1st ed. (VEB Deutscher Verlag für Grundstoffindustrie, 1982).

H. Jäger, P. James, S. Kreipl, A. Stohl, and T. Trickl, “Long-range transport and its impact on the vertical distribution of trace constituents in the central European free troposphere,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, and B. Warmbein, eds. (ESA Publications Division, 2004), pp. 679-682.

H. Vogelmann, “Entwicklung und Aufbau eines Hochleistungs-Wasserdampf-LIDAR-Systems auf der Zugspitze,” Ph.D. Dissertation (in German) (Universität Augsburg, 2006).

K. Grützmacher and A. Steiger (personal communication, 1998).

U. Kempfer, “Entwicklung und Anwendung eines differentiellen Absorptions-LIDAR-Systems zur Messung der troposphärischen Ozonkonzentration,” Ph.D. Dissertation (in German), pp. 151 (Ludwig-Maximilians-Univeristät München, 1992).

T. Trickl and H. Vogelmann, “Wide-range vertical sounding of free-tropospheric water vapour: The first two years of operation of the Zugspitze differential-absorption lidar,” in Reviewed and Revised Papers Presented at the 23rd International Laser and Radar Conference, Part II, C. Nagasawa and N. Sugimoto, eds. (University of Tokyo, 2006), pp. 687-690.

LOWTRAN 5 model (1989), ONTAR Corporation, 9 Village Way, North Andover, MA 01845-2000 USA.

VDI guide line 4210, Remote sensing, Atmospoheric measurements with LIDAR, Measuring gaseous air pollution with the DAS LIDAR (Verein Deutscher Ingenieure, 1999), pp. 47.

R. Sussmann and C. Camy-Peyret, “Two years of satellite validation at the permanent ground-truthing facility Zugspitze/Garmisch: implementations for AIRS/IASI validation,” (International Ozone Comission, World Meteorological Organization, 2004), Vol. 1, pp. 616-617.

“SPARC assessment of the upper tropospheric and stratospheric water vapour,” Report, WMO/TD No. 1043 (World Meteorological Organization, 2000), pp. 312.

Global Atmosphere Watch, “Report of the third session of the EC panel of experts/cas working group on environmental pollution and atmospheric chemistry,” (World Meteorological Organization, 1993), pp. 25.

L. S. Rothmann, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database, edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).

VOTALP II, Vertical Ozone Transport in the Alps II, Final Report for the European Union, Contract No.: ENV4 CT970413, H.Kromp-Kolb, Coordinator, pp. 96 (Universität für Bodenkultur, Wien, Austria, 2000).

S. Kreipl, “Messung des aerosoltransports am alpennordrand mittels laserradar (lidar),” Ph.D. Dissertation (in German) (Universität Erlangen, 2006) pp. 195.

A. Hoffstädt, “Physikalische und technische Grundlagen von lampengepumpten Hochleitungs-Ti:Saphir-Laser-Oszillatoren und -Verstärkern,” Ph.D. Dissertation (in German) (Technische Universität Berlin, 1995), pp. 197.

P. Brenner, O. Reitebuch, K. Schäfer, and T. Trickl, “A novel mobile vertical-sounding system for ozone studies in the lower troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, P. R. A. Ansmann, R. Neuber, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 383-386 Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22-26 July 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Water-vapor concentrations given by the LOWTRAN-5 model [70]. Arrows show the respective operating ranges for a DIAL operation with three different band systems of water vapor and for two elevated platforms ( 2.7km and 7.5km asl.). For details see Section 2.

Fig. 2
Fig. 2

Relative error at a distance of 9.0km ( 11765m asl.) as a function of the absorption cross section for 2765m asl. or the equivalent 296K line strength, at a λon wavelength of 817.223nm and for the two LOWTRAN 5 models used in the simulations. The band system around 817nm provides lines with suitable cross sections in the entire range displayed, and also contains the strongest line listed by Ponsardin and Browell [73] (strength: 4.98×1023cm1molecule1cm2 ).

Fig. 3
Fig. 3

Relative measurement errors (electronic noise neglected) for lidar measurements at 817 and 935nm for different conditions. MS means midlatitude summer and MW means midlatitude winter. The right column shows the optimized line strengths used in 1023cm1mol1cm2 . The water-vapor distributions for summer and winter were taken from the LOWTRAN 5 model [70].

Fig. 4
Fig. 4

Laser system of the Zugspitze water-vapor lidar: the emission at the two DIAL wavelengths is generated with two Littman OPOs pumped by an injection-seeded flash-lamp-pumped Nd:YAG laser. The light from the OPOs is regeneratively amplified in alternating sequence in a flash-lamp-pumped Ti:Sapphire ring laser. The OPOs are actively wavelength controlled with an accurate wavelength meter. The diodes D1 and D2 are used for power monitoring. The laser table is installed inside a flow box thermally stabilized to within 0.5K in order to ensure low thermal drifts of the OPOs.

Fig. 5
Fig. 5

Section of a time series of both OPO wavelengths registered in alternating sequence with a repetition rate of 20Hz . The difference of two wavelengths corresponds to frequency difference of about 500  MHz .

Fig. 6
Fig. 6

Amplification testing of the Ti:sapphire ring laser at 800nm with 6 and 10 round trips and different charging voltages. The maximum output energy is obtained after 10 round trips in the ring. The output for 10 round trips scales linearly with the flashlamp voltage.

Fig. 7
Fig. 7

Principal layout of the lidar receiver with near- and far-field channel. The solar background is reduced by two interference filters (5 and 0.5nm ). The lidar return is detected with avalanche photodiodes (APDs). There is the option of an additional far-field channel (shown in gray), which becomes necessary if (after achieving a better signal-to-noise ratio) improved spectral filtering with Fabry–Perot etalons will be used for the rejection of the solar background. The use of a rotating beam splitter is planned for the separation. All lenses except the aspherical ones have a focal length of 100mm .

Fig. 8
Fig. 8

Mixture of Doppler-broadened light from Rayleigh backscatter and narrow-band light from aerosol backscatter.

Fig. 9
Fig. 9

Sensitivity term g1 ( λon=817.163nm ) for the LOWTRAN 5 midlatitude models (summer and winter) and, recalculated iteratively, for a measurement on 11 October 2005.

Fig. 10
Fig. 10

Sensitivity term g2 ( λon=817.163nm ) for the LOWTRAN 5 midlatitude models (summer and winter) and, recalculated iteratively, for a measurement on 11 October 2005.

Fig. 11
Fig. 11

Water-vapor profiles for near and far field: The overlap range of both channels is about 1000m . Below 3500m the far-field result starts to deviate from the near-field profile due to overloading the λoff transient digitizer.

Fig. 12
Fig. 12

Correlation between the in situ humidity measurement at the Zugspitze summit and the DIAL: The in situ measurements are, in part, influenced by convection, which results in higher H2O densities in these cases.

Fig. 13
Fig. 13

Uncorrected and corrected water-vapor profiles as well as the particle backscatter coefficient βP for a case with moderately elevated aerosol in the free troposphere: The strongest deviations are seen around the extrema of the derivative of βP . The error bars correspond to the density noise estimated for this measurement.

Fig. 14
Fig. 14

DIAL measurement under very dry conditions on 17 September 2004 (a)  3km to 12km , (b)  7km to 12km with expanded density scale; the very low humidity in the free troposphere is confirmed by a comparison with the result of two ascents of the Munich radiosonde (about 100km to the north). The circles mark “significant points” of the reduced sonde dataset. The dashed line below 4km represents the humidity drop seen by the radiosonde, but with a vertical shift of 1350m . This illustrates the similar upper-edge slope of the boundary layer above both Zugspitze and Munich. The thin dotted line marks the modeled LOWTRAN-5 water-vapor concentration.

Fig. 15
Fig. 15

An extremely dry layer (relative humidity about 1%) due to a stratospheric intrusion, detected both by the DIAL and the Munich radiosonde on 31 October 2007.

Fig. 16
Fig. 16

Daytime DIAL measurement under rather humid conditions in the upper troposphere and an anomalous high tropopause of about 12.3km asl. This can be seen in the 100%–humidity curve calculated from the radiosonde data.

Fig. 17
Fig. 17

Backward trajectories calculated with the HYSPLIT model for the time and location of the DIAL measurement at 2 February 2007, 14:00 UTC. The trajectories substantiate the presumption of tropical moist air being transported to these exceptional high altitudes.

Fig. 18
Fig. 18

Comparison between DIAL and a radiosonde launched at Garmisch-Partenkirchen. The vertical downward shift of the radiosonde profile above 4.8km is presumably mostly caused by orographic effects.

Tables (2)

Tables Icon

Table 1 Parameters of the Laser System

Tables Icon

Table 2 Parameters of the Lidar Receiver

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

NW(r)=12ΔσddrlnS(λon,r)S(λoff,r).
G=G(λon,r)=G1+G2=g1ddrVβ+g2Vβ,
NW(r)=1Δσ(r)+Δσ(r)(G(r)ddrlnSon(r)Soff(r)),
Ni=1Δσi+Δσi(Gij=iki+k(ji)qjqi·δij=iki+k(ji)2),
j=iki+k(ji)2=k(k+1)(2k+1)3.

Metrics