Abstract

We use low coherence interferometry to investigate the depth structure of a complex multilayer stack reflector. The probing instrument is an interferometer based on a Fresnel’s bi-mirror illuminated by relatively wide-band synchrotron undulator light near 13.5nm. Simulations clearly confirm that our test object generates two back propagated signals that behave as if reflected on two effective planes. First results in this spectral range may open the way to a new physical approach to extreme ultraviolet sample characterization in the form of line-scan optical coherence tomography.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Barbee Jr., S. Mrowka, and M. C. Hettrick, “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet,” Appl. Opt. 24, 883-886 (1985).
  2. J. Gautier, F. Delmotte, M. Rouillay, F. Bridou, M. F. Ravet, and A. Jérôme, “Study of normal incidence three component multilayer mirrors in the range 20 nm-40 nm,” Appl. Opt. 44 (3), 384-390 (2005).
    [CrossRef]
  3. R. M. Fechtchenko, A. V. Vinogradova, and D. L. Voronov, “Optical properties of sliced multilayer gratings,” Opt. Commun. 210, 179-186 (2002).
    [CrossRef]
  4. M. D. Levinson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29 (1982).
  5. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature (London) 406 (6799), 1027-1031 (2000).
  6. J. Svatos, D. Joyeux, D. Phalippou, and F. Polack, “Soft-x-ray interferometer for measuring the refractive index of materials,” Opt. Lett. 18 (16), 1367-1369 (1993).
  7. C. Chang, E. Anderson, P. Naulleau, E. Gullikson, K. Goldberg, and D. Attwood, “Direct measurement of index of refraction in the extreme-ultraviolet wavelength region with a novel interferometer,” Opt. Lett. 27, 1028-1030 (2002).
    [CrossRef]
  8. L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991-3994 (1995).
    [CrossRef]
  9. R. F. Smith, J. Dunn, J. Nilsen, J. R. Hunter, V. N. Shlyaptsev, J. J. Rocca, J. Filevich, and M. C. Marconi, “Refraction effects on x-ray and ultraviolet interferometric probing of laser-produced plasmas,” J. Opt. Soc. Am. B 20, 254-259 (2003).
    [CrossRef]
  10. P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, and J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252-7263 (1999).
  11. M. Richard, D. Constancias, D. Joyeux, J. Y. Robic, S. de Rossi, and N. de Oliveira, “EUV phase shift masks samples at wavelength phase shift measurements on dedicated samples,” in The Proceedings of the 5th International EUVL Symposium (October 8-10 2006).
  12. P. P. Naulleau and K. A. Goldberg, “Dual-domain point diffraction interferometer,” Appl. Opt. 383523-3533 (1999).
  13. J. J. Rocca, C. H. Moreno, M. C. Marconi, and K. Kanizay, “Soft-x-ray laser interferometry of a plasma with a tabletop laser and a Lloyd's mirror,” Opt. Lett. 24, 420-422 (1999).
  14. L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo,J. C. Moreno, S. Mrowka, J. E. Trebes, A. S. Wan, and F. Weber, “Extreme-ultraviolet interferometry at 15.5 nm using multilayer optics,” Appl. Opt. 34, 6389-6392 (1995).
  15. Y. Zhu, K. Sugisaki, M. Okada, K. Otaki, Z. Liu, J. Kawakami, M. Ishii, J. Saito, K. Murakami, M. Hasegawa, C. Ouchi, S. Kato, T. Hasegawa, A. Suzuki, H. Yokota, and M. Niibe, “Wavefront measurement interferometry at the operational wavelength of extreme-ultraviolet lithography,” Appl. Opt. 46, 6783-6792 (2007).
    [CrossRef]
  16. F. Polack, D. Joyeux, J. Svatos, and D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66 (2), 2180-2183 (1995).
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferogram,” J. Opt. Soc. Am. A 72, 156 (1982).
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Wang, M. R. Hee, T. Flolte, K. Gregory, C. A. Pulia, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef]
  19. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27 (20), 1800-1802 (2002).
    [CrossRef]
  20. D. L. Windt, “XUV optical constants of single-crystal GaAs and sputtered C, Si, Cr3C2, Mo and W,” Appl. Opt. 30, 15-25 (1991).
  21. R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region,” Appl. Opt. 36, 5499-5507 (1997).
  22. R. Soufli and E. M. Gullikson, “Absolute photoabsorption measurements of molybdenum in the range 60 to 930 eV for optical constant determination,” Appl. Opt. 37, 1713-1719 (1998).
  23. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100-4104 (1998).
  24. E. Spiller, Soft X-Ray Optics (SPIE Optical Engineering Press, 1994).
  25. M. Born and E. Wolf, Principle of Optics (Pergamon, 1970).

2007 (1)

2005 (1)

2003 (1)

2002 (3)

2000 (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature (London) 406 (6799), 1027-1031 (2000).

1999 (3)

1998 (2)

1997 (1)

1995 (3)

L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo,J. C. Moreno, S. Mrowka, J. E. Trebes, A. S. Wan, and F. Weber, “Extreme-ultraviolet interferometry at 15.5 nm using multilayer optics,” Appl. Opt. 34, 6389-6392 (1995).

L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991-3994 (1995).
[CrossRef]

F. Polack, D. Joyeux, J. Svatos, and D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66 (2), 2180-2183 (1995).

1993 (1)

1991 (2)

D. L. Windt, “XUV optical constants of single-crystal GaAs and sputtered C, Si, Cr3C2, Mo and W,” Appl. Opt. 30, 15-25 (1991).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Wang, M. R. Hee, T. Flolte, K. Gregory, C. A. Pulia, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

1985 (1)

1982 (2)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferogram,” J. Opt. Soc. Am. A 72, 156 (1982).

M. D. Levinson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29 (1982).

Appl. Opt. (10)

T. W. Barbee Jr., S. Mrowka, and M. C. Hettrick, “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet,” Appl. Opt. 24, 883-886 (1985).

J. Gautier, F. Delmotte, M. Rouillay, F. Bridou, M. F. Ravet, and A. Jérôme, “Study of normal incidence three component multilayer mirrors in the range 20 nm-40 nm,” Appl. Opt. 44 (3), 384-390 (2005).
[CrossRef]

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, and J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252-7263 (1999).

P. P. Naulleau and K. A. Goldberg, “Dual-domain point diffraction interferometer,” Appl. Opt. 383523-3533 (1999).

L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo,J. C. Moreno, S. Mrowka, J. E. Trebes, A. S. Wan, and F. Weber, “Extreme-ultraviolet interferometry at 15.5 nm using multilayer optics,” Appl. Opt. 34, 6389-6392 (1995).

Y. Zhu, K. Sugisaki, M. Okada, K. Otaki, Z. Liu, J. Kawakami, M. Ishii, J. Saito, K. Murakami, M. Hasegawa, C. Ouchi, S. Kato, T. Hasegawa, A. Suzuki, H. Yokota, and M. Niibe, “Wavefront measurement interferometry at the operational wavelength of extreme-ultraviolet lithography,” Appl. Opt. 46, 6783-6792 (2007).
[CrossRef]

D. L. Windt, “XUV optical constants of single-crystal GaAs and sputtered C, Si, Cr3C2, Mo and W,” Appl. Opt. 30, 15-25 (1991).

R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region,” Appl. Opt. 36, 5499-5507 (1997).

R. Soufli and E. M. Gullikson, “Absolute photoabsorption measurements of molybdenum in the range 60 to 930 eV for optical constant determination,” Appl. Opt. 37, 1713-1719 (1998).

C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100-4104 (1998).

IEEE Trans. Electron Devices (1)

M. D. Levinson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29 (1982).

J. Opt. Soc. Am. A (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferogram,” J. Opt. Soc. Am. A 72, 156 (1982).

J. Opt. Soc. Am. B (1)

Nature (London) (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature (London) 406 (6799), 1027-1031 (2000).

Opt. Commun. (1)

R. M. Fechtchenko, A. V. Vinogradova, and D. L. Voronov, “Optical properties of sliced multilayer gratings,” Opt. Commun. 210, 179-186 (2002).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

L. B. Da Silva, T. W. Barbee Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991-3994 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

F. Polack, D. Joyeux, J. Svatos, and D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66 (2), 2180-2183 (1995).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Wang, M. R. Hee, T. Flolte, K. Gregory, C. A. Pulia, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Other (3)

M. Richard, D. Constancias, D. Joyeux, J. Y. Robic, S. de Rossi, and N. de Oliveira, “EUV phase shift masks samples at wavelength phase shift measurements on dedicated samples,” in The Proceedings of the 5th International EUVL Symposium (October 8-10 2006).

E. Spiller, Soft X-Ray Optics (SPIE Optical Engineering Press, 1994).

M. Born and E. Wolf, Principle of Optics (Pergamon, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Phase difference measurement using a Fresnel’s bi-mirror interferometer. Through a suitable alignment of zone boundaries relative to the two mirrors common edge, three fringe fields are produced, which are shifted according to the sample characteristics.

Fig. 2
Fig. 2

Interferogram obtained with Fresnel’s bi-mirror and PSM component. (a) narrow band illumination; (b) wide-band illumination: blurring by spectral width is clearly visible. The modulation due to the Fresnel diffraction is also clearly visible in top and in bottom of both interferograms.

Fig. 3
Fig. 3

Profiles (a and b) and contrasts (c) of the experimental interferograms from Fig. 2b. (a)  reference + reference ; (b)  reference + PSM ; (c) contrast plot : reference + reference [dashed curve (a)], reference + PSM [solid curve (b)]. Note : the left here is the bottom in Fig. 2.

Fig. 4
Fig. 4

Contrast of inteferograms simulated with different reflective structures. The reference region is a Mo-Si stack with 51 periods on Si substrate. This region interferes with : (a) reference itself; (b)  60   periods + substrate (solid curve) and 40   periods + substrate (dashed curve); and (c) PSM : 11   periods + 3 nm   SiO2 + 40   periods + substrate ; (d) PSM with seven periods on the top stack (solid curve) and PSM with three periods on the top stack (dashed curve).

Fig. 5
Fig. 5

Sectional scheme of the reference zone (left) and the PSM zone (right). The optical rays describe the reflection of the EUV illumination on the effective planes of the stacks. In the PSM component the effective planes define a Fabry–Perot cavity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I REF + REF ( x ) = λ min λ max S ( λ ) × | R REF ( λ ) × U 1 ( x , λ ) + R REF ( λ ) × U 2 ( x , λ ) | 2 ,
I REF + PSM ( x ) = λ min λ max S ( λ ) × | R REF ( λ ) × U 1 ( x , λ ) + R PSM ( λ ) × U 2 ( x , λ ) e 4 i π λ ( e PSM e REF ) | 2 .
F = π a cos [ 2 R B R T e β 1 + R B R T e β ] ,
β = 2 π λ 0 I ( 2 L FP ) ,
L FP = N FP ( n Mo e Mo + n Si e Si ) + n SiO2 e SiO2 .

Metrics