Abstract

Spaceborne ocean color sensors require vicarious calibration to sea-truth data to achieve accurate water-leaving radiance retrievals. The assumed requirements of an in situ data set necessary to achieve accurate vicarious calibration were set forth in a series of papers and reports developed nearly a decade ago, which were embodied in the development and site location of the Marine Optical BuoY (MOBY). Since that time, NASA has successfully used data collected by MOBY as the sole source of sea-truth data for vicarious calibration of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer instruments. In this paper, we make use of the 10-year, global time series of SeaWiFS measurements to test the sensitivity of vicarious calibration to the assumptions inherent in the in situ requirements (e.g., very low chlorophyll waters, hyperspectral measurements). Our study utilized field measurements from a variety of sources with sufficient diversity in data collection methods and geophysical variability to challenge those in situ restrictions. We found that some requirements could be relaxed without compromising the ability to vicariously calibrate to the level required for accurate water-leaving radiance retrievals from satellite-based sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265-278 (1998).
    [CrossRef]
  2. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17,209-17,217 (1997).
    [CrossRef]
  3. D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” NASA Tech. Memo. 2004-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).
  4. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068-5082(2007).
    [CrossRef]
  5. C. Welsch, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, and P. E. Ardanuy, “VIIRS (Visible Infrared Imager Radiometer Suite): a next generation operational environmental sensor for NPOESS,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 1020-1022.
  6. P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46, 5649-5666 (2007).
    [CrossRef]
  7. R. A. Barnes, J. Robert, E. Eplee, W. D. Robinson, G. M. Schmidt, F. S. Patt, S. W. Bailey, M. Wang, and C. R. McClain, “The calibration of SeaWiFS on orbit,” Proc. SPIE 4135, 281-293 (2000).
    [CrossRef]
  8. J. L. Mueller, R. W. Austin, A. Morel, G. S. Fargion, and C. R. McClain, “Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Introduction, background and conventions,” NASA Tech. Memo. 2003-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).
  9. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
    [CrossRef]
  10. D. Antoine, J.-F. Desté, G. Bécu, F. Louis, A. J. Scott, and P. Bardey, “The BOUSSOLE buoy: A new transparent-to-swell taut mooring dedicated to marine optics: design, tests and performance at sea,” J. Atmos. Ocean. Technol. (to be published).
  11. G. Zibordi, S. B. Hooker, J.-F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: A field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808-819 (2002).
    [CrossRef]
  12. P.-Y. Deschamps, B. Fougnie, R. Frouin, P. Lecomte, and C. Verwaerde, “SIMBAD: A field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055-4069 (2004).
    [CrossRef]
  13. R. A. Barnes, R. E. Eplee Jr., G. M. Schmidt, F. S. Patt, and C. R. McClain, “Calibration of SeaWiFS. I. Direct techniques,” Appl. Opt. 40, 6682-6700 (2001).
    [CrossRef]
  14. B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, “The continuity of ocean color measurements from SeaWiFS to MODIS,” Proc. SPIE 5882, 58820W (2005)
    [CrossRef]
  15. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, and T. Svitek, “SeaWiFS prelaunch radiometric calibration and spectral characterization,” NASA Tech. Memo. 104566, NASA, Goddard Space Flight Center, Greenbelt, MD (1995).
  16. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363-8374 (1995).
  17. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343-348 (2001).
    [CrossRef]
  18. F. S. Patt, R. A. Barnes, R. E. Eplee Jr., B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, “Algorithm updates for the fourth SeaWiFS data reprocessing,” NASA Tech. Memo. 206892, Vol. 22, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).
  19. D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” in Earth Observing Systems VI, Vol. 4483, W.L.Barnes, ed. (SPIE, 2002), pp. 64-76.
  20. P. J. Werdell, S. W. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” EOS Trans. Am. Geophys. Union 84, (2003).
    [CrossRef]
  21. D. Antoine, M. Chami, H. Claustre, F. d'Ortenzio, A. Morel, G. Bécu, B. Gentili, F. Louis, J. Ras, E. Roussier, A. J. Scott, D. Tailliez, S. B. Hooker, P. Guevel, J.-F. Dest´, C. Dempsey, and D. Adams, “BOUSSOLE: a joint CNRS-INSU, ESA, CNES, and NASA ocean color calibration and validation activity,” NASA Tech. Memo. 214147, NASA, Goddard Space Flight Center, Greenbelt, MD (2007).
  22. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sensing 23, 2693-2702 (2002).
    [CrossRef]
  23. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sensing 26, 5651-5653 (2005).
    [CrossRef]
  24. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
  25. H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWiFS,” Appl. Opt. 33, 7754-7763 (1994).
  26. R. Frouin, M. Schwindling, and P. Y. Dechamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361-14,371 (1996).
    [CrossRef]
  27. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493-6499 (2000).
    [CrossRef]
  28. M. Wang, “Atmospheric correction of ocean color sensors: Computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451-455 (1999).
  29. S. Bailey and P. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12-23 (2006).
    [CrossRef]
  30. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
  31. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).
  32. J. E. O'Reilly, S. Maritorena, D. A. Siegel, M. C. O'Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. E. Muller-Karger, L. W. Harding Jr., A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analysis, Part 3, S. B. Hooker and E. R. Firestone, eds. (NASA Tech. Memo. 206892, Vol. 11, NASA, Goddard Space Flight Center, Greenbelt, Maryland, 2000), pp. 9-24.
  33. W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM 1,” IEEE Trans. Geosci. Remote Sens. 36, 1088-1100 (1998).
    [CrossRef]
  34. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566, NASA, Goddard Space Flight Center, Greenbelt, MD (1992).
  35. S. B. Hooker, S. McLean, J. Sherman, M. Small, and G. Zibordi, “The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7),” SeaWiFS Postlaunch Technical Report Series2000-206892, NASA, Goddard Space Flight Center, Greenbelt, MD (1999).
  36. S. B. Hooker and S. Maritorena, “An evaluation of oceanographic radiometers and deployment methodologies,” J. Atmos. Ocean. Technol. 17, 811-830 (2000).
    [CrossRef]
  37. J. L. Mueller, D. K. Clark, V. S. Kuwahara, G. Lazin, S. Brown, G. S. Fargion, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, M. Yuen, P. G. Strutton, T. D. Dickey, M. R. Abbott, R. M. Letelier, M. R. Lewis, S. McLean, F. P. Chavez, J. R. M. A. Barnard, A. Subramaniam, D. Manov, X. Zheng, J. L. W. Harding, R. A. Barnes, and K. R. Lykke, “Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Special topics in ocean optics protocols and appendices,” NASA Tech. Memo. 2004-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).
  38. J. Sun, X. Xiong, B. Guenther, and W. Barnes, “Radiometric stability monitoring of the MODIS reflective solar bands using the moon,” Metrologia 40, S85-S88 (2003).
    [CrossRef]
  39. F. S. Patt, R. E. Eplee, R. A. Barnes, G. Meister, and J. J. Butler, “Use of the moon as a calibration reference for NPP VIIRS,” Proc. SPIE 5882, 588215 (2005).
    [CrossRef]
  40. S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486-515 (2002).
    [CrossRef]
  41. G. Fargion, R. Barnes, and C. R. McClain, “In situ aerosol optical thickness collected by the SIMBIOS Program (1997-2000): Protocols, and data QC and analysis,” NASA Tech. Memo. 209982, NASA, Goddard Space Flight Center, Greenbelt, MD (2001).
  42. S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
    [CrossRef]

2007 (3)

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[CrossRef]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068-5082(2007).
[CrossRef]

P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46, 5649-5666 (2007).
[CrossRef]

2006 (1)

S. Bailey and P. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12-23 (2006).
[CrossRef]

2005 (4)

F. S. Patt, R. E. Eplee, R. A. Barnes, G. Meister, and J. J. Butler, “Use of the moon as a calibration reference for NPP VIIRS,” Proc. SPIE 5882, 588215 (2005).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sensing 26, 5651-5653 (2005).
[CrossRef]

B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, “The continuity of ocean color measurements from SeaWiFS to MODIS,” Proc. SPIE 5882, 58820W (2005)
[CrossRef]

2004 (1)

2003 (2)

J. Sun, X. Xiong, B. Guenther, and W. Barnes, “Radiometric stability monitoring of the MODIS reflective solar bands using the moon,” Metrologia 40, S85-S88 (2003).
[CrossRef]

P. J. Werdell, S. W. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” EOS Trans. Am. Geophys. Union 84, (2003).
[CrossRef]

2002 (3)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sensing 23, 2693-2702 (2002).
[CrossRef]

G. Zibordi, S. B. Hooker, J.-F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: A field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808-819 (2002).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486-515 (2002).
[CrossRef]

2001 (2)

2000 (4)

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493-6499 (2000).
[CrossRef]

R. A. Barnes, J. Robert, E. Eplee, W. D. Robinson, G. M. Schmidt, F. S. Patt, S. W. Bailey, M. Wang, and C. R. McClain, “The calibration of SeaWiFS on orbit,” Proc. SPIE 4135, 281-293 (2000).
[CrossRef]

S. B. Hooker and S. Maritorena, “An evaluation of oceanographic radiometers and deployment methodologies,” J. Atmos. Ocean. Technol. 17, 811-830 (2000).
[CrossRef]

1999 (1)

1998 (2)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM 1,” IEEE Trans. Geosci. Remote Sens. 36, 1088-1100 (1998).
[CrossRef]

H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265-278 (1998).
[CrossRef]

1997 (1)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17,209-17,217 (1997).
[CrossRef]

1996 (1)

R. Frouin, M. Schwindling, and P. Y. Dechamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361-14,371 (1996).
[CrossRef]

1995 (1)

1994 (2)

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).

Appl. Opt. (10)

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).

H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWiFS,” Appl. Opt. 33, 7754-7763 (1994).

M. Wang, “Atmospheric correction of ocean color sensors: Computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451-455 (1999).

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363-8374 (1995).

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343-348 (2001).
[CrossRef]

R. A. Barnes, R. E. Eplee Jr., G. M. Schmidt, F. S. Patt, and C. R. McClain, “Calibration of SeaWiFS. I. Direct techniques,” Appl. Opt. 40, 6682-6700 (2001).
[CrossRef]

P.-Y. Deschamps, B. Fougnie, R. Frouin, P. Lecomte, and C. Verwaerde, “SIMBAD: A field radiometer for satellite ocean-color validation,” Appl. Opt. 43, 4055-4069 (2004).
[CrossRef]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068-5082(2007).
[CrossRef]

P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46, 5649-5666 (2007).
[CrossRef]

EOS Trans. Am. Geophys. Union (1)

P. J. Werdell, S. W. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” EOS Trans. Am. Geophys. Union 84, (2003).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM 1,” IEEE Trans. Geosci. Remote Sens. 36, 1088-1100 (1998).
[CrossRef]

Int. J. Remote Sensing (2)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sensing 23, 2693-2702 (2002).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sensing 26, 5651-5653 (2005).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

G. Zibordi, S. B. Hooker, J.-F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: A field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808-819 (2002).
[CrossRef]

S. B. Hooker and S. Maritorena, “An evaluation of oceanographic radiometers and deployment methodologies,” J. Atmos. Ocean. Technol. 17, 811-830 (2000).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486-515 (2002).
[CrossRef]

J. Geophys. Res. (3)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17,209-17,217 (1997).
[CrossRef]

R. Frouin, M. Schwindling, and P. Y. Dechamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361-14,371 (1996).
[CrossRef]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493-6499 (2000).
[CrossRef]

Limnol. Oceanogr. (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).

Metrologia (1)

J. Sun, X. Xiong, B. Guenther, and W. Barnes, “Radiometric stability monitoring of the MODIS reflective solar bands using the moon,” Metrologia 40, S85-S88 (2003).
[CrossRef]

Proc. SPIE (4)

F. S. Patt, R. E. Eplee, R. A. Barnes, G. Meister, and J. J. Butler, “Use of the moon as a calibration reference for NPP VIIRS,” Proc. SPIE 5882, 588215 (2005).
[CrossRef]

B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, “The continuity of ocean color measurements from SeaWiFS to MODIS,” Proc. SPIE 5882, 58820W (2005)
[CrossRef]

R. A. Barnes, J. Robert, E. Eplee, W. D. Robinson, G. M. Schmidt, F. S. Patt, S. W. Bailey, M. Wang, and C. R. McClain, “The calibration of SeaWiFS on orbit,” Proc. SPIE 4135, 281-293 (2000).
[CrossRef]

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[CrossRef]

Remote Sens. Environ. (3)

S. Bailey and P. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12-23 (2006).
[CrossRef]

H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265-278 (1998).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

Other (13)

D. Antoine, J.-F. Desté, G. Bécu, F. Louis, A. J. Scott, and P. Bardey, “The BOUSSOLE buoy: A new transparent-to-swell taut mooring dedicated to marine optics: design, tests and performance at sea,” J. Atmos. Ocean. Technol. (to be published).

F. S. Patt, R. A. Barnes, R. E. Eplee Jr., B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, “Algorithm updates for the fourth SeaWiFS data reprocessing,” NASA Tech. Memo. 206892, Vol. 22, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” in Earth Observing Systems VI, Vol. 4483, W.L.Barnes, ed. (SPIE, 2002), pp. 64-76.

J. L. Mueller, R. W. Austin, A. Morel, G. S. Fargion, and C. R. McClain, “Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Introduction, background and conventions,” NASA Tech. Memo. 2003-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” NASA Tech. Memo. 2004-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, and T. Svitek, “SeaWiFS prelaunch radiometric calibration and spectral characterization,” NASA Tech. Memo. 104566, NASA, Goddard Space Flight Center, Greenbelt, MD (1995).

C. Welsch, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, and P. E. Ardanuy, “VIIRS (Visible Infrared Imager Radiometer Suite): a next generation operational environmental sensor for NPOESS,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2001), pp. 1020-1022.

J. E. O'Reilly, S. Maritorena, D. A. Siegel, M. C. O'Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. E. Muller-Karger, L. W. Harding Jr., A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4,” in SeaWiFS Postlaunch Calibration and Validation Analysis, Part 3, S. B. Hooker and E. R. Firestone, eds. (NASA Tech. Memo. 206892, Vol. 11, NASA, Goddard Space Flight Center, Greenbelt, Maryland, 2000), pp. 9-24.

D. Antoine, M. Chami, H. Claustre, F. d'Ortenzio, A. Morel, G. Bécu, B. Gentili, F. Louis, J. Ras, E. Roussier, A. J. Scott, D. Tailliez, S. B. Hooker, P. Guevel, J.-F. Dest´, C. Dempsey, and D. Adams, “BOUSSOLE: a joint CNRS-INSU, ESA, CNES, and NASA ocean color calibration and validation activity,” NASA Tech. Memo. 214147, NASA, Goddard Space Flight Center, Greenbelt, MD (2007).

G. Fargion, R. Barnes, and C. R. McClain, “In situ aerosol optical thickness collected by the SIMBIOS Program (1997-2000): Protocols, and data QC and analysis,” NASA Tech. Memo. 209982, NASA, Goddard Space Flight Center, Greenbelt, MD (2001).

J. L. Mueller, D. K. Clark, V. S. Kuwahara, G. Lazin, S. Brown, G. S. Fargion, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, M. Yuen, P. G. Strutton, T. D. Dickey, M. R. Abbott, R. M. Letelier, M. R. Lewis, S. McLean, F. P. Chavez, J. R. M. A. Barnard, A. Subramaniam, D. Manov, X. Zheng, J. L. W. Harding, R. A. Barnes, and K. R. Lykke, “Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4: Special topics in ocean optics protocols and appendices,” NASA Tech. Memo. 2004-211621, NASA, Goddard Space Flight Center, Greenbelt, MD (2003).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566, NASA, Goddard Space Flight Center, Greenbelt, MD (1992).

S. B. Hooker, S. McLean, J. Sherman, M. Small, and G. Zibordi, “The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7),” SeaWiFS Postlaunch Technical Report Series2000-206892, NASA, Goddard Space Flight Center, Greenbelt, MD (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Map showing the locations for the in situ data used in this study.

Fig. 2
Fig. 2

Frequency distributions for key parameters of the in situ data sets. Data from MOBY are shown by the solid black curve, BOUSSOLE by the dotted black curve, and NOMAD by the solid gray curve. The C a data for MOBY and the τ a ( 865 ) data for NOMAD are coincident SeaWiFS C a retrievals.

Fig. 3
Fig. 3

Vicarious calibration coefficients as a function of wavelength. The standard MOBY-derived g λ ¯ (solid curve) are overplotted by the msMOBY-, NOMAD-, and BOUSSOLE-derived g λ ¯ . The shaded regions indicate the ranges for the first (light-gray) and second (dark-gray) standard deviations of the mean for g λ ¯ .

Fig. 4
Fig. 4

g ( 443 nm ) as a function of satellite-derived C a for (a) NIR-uncorrected data set, (b) the NIR-corrected data set and the ratio of the two, and (c) ratio of (a) to (b).

Fig. 5
Fig. 5

g ( 443 nm ) as a function of the satellite-estimated τ a ( 865 nm ) . Data from MOBY (open circles), as well as the NIR-corrected NOMAD and BOUSSOLE data sets (filled circles) are shown.

Fig. 6
Fig. 6

g ( 443 nm ) derived from MOBY (open circles), as well as the NIR-corrected g ( 443 nm ) derived from NOMAD and BOUSSOLE data sets (filled circles) versus the satellite-estimated Ångstrøm ( 510 : 865 nm ) exponent.

Fig. 7
Fig. 7

Satellite-derived chlorophyll estimated from the two alternative g ¯ gain sets (msMOBY and NOMAD/BOUSSOLE) plotted versus the corresponding chlorophyll estimated from the standard MOBY g ¯ .

Tables (5)

Tables Icon

Table 1 Current Recommended Requirements on Sea-Truth Data for Vicarious Calibration Activities a

Tables Icon

Table 2 Vicarious Gain Coefficients for Standard Method a

Tables Icon

Table 3 Vicarious Gain Coefficients Using msMOBY Data a

Tables Icon

Table 4 Combined NOMAD and BOUSSOLE Vicarious Gain Coefficients a

Tables Icon

Table 5 Validation Results a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L t ( λ ) = [ L r ( λ ) + L a ( λ ) + t d v ( λ ) L f ( λ ) + t d v ( λ ) L W ( λ ) ] t g v ( λ ) t g s ( λ ) ,
g λ = L t vicarious ( λ ) L t measured ( λ ) .
[ j = 1 N g λ ( j ) ] / N ,
R rs ( λ ) = L W ( λ ) E s ( λ ) ,
CV λ = 100 * 2 * σ λ g ¯ λ .
UPD λ = 100 * g ¯ λ ( g ¯ λ + g ¯ λ ) / 2 ( g ¯ λ + g ¯ λ ) / 2 = 100 * g ¯ λ g ¯ λ g ¯ λ + g ¯ λ .
RPD λ = 100 * g ¯ λ g ¯ λ g ¯ λ

Metrics