Abstract

Quadrature interferometry based on 3×3 fiber couplers could be used to double the effective imaging depth in swept-source optical coherence tomography. This is due to its ability to suppress the complex conjugate artifact naturally. We present theoretical and experimental results for a 3×3 Mach–Zehnder interferometer using a new unbalanced differential optical detection method. The new interferometer provides simultaneous access to complementary phase components of the complex interferometric signal. No calculations by trigonometric relationships are needed. We demonstrate a complex conjugate artifact suppression of 27dB obtained in swept-source optical coherence tomography using our unbalanced differential detection. We show that our unbalanced differential detection has increased the signal-to-noise ratio by at least 4dB compared to the commonly used balanced detection technique. This is due to better utilization of optical power.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [Crossref]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. , 12, 158-160 (1987).
  3. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603-1606 (1987).
  4. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
  6. M. A. Choma, M. V. Saranic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
    [Crossref]
  8. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [Crossref]
  9. G. Hausler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
    [Crossref]
  10. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
  11. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523-10537 (2005).
    [Crossref]
  12. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
    [Crossref]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828 (2004).
    [Crossref]
  14. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362-364 (2006).
    [Crossref]
  15. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers,” Opt. Lett. 28, 2162-2164 (2003).
    [Crossref]
  16. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426-2428 (2006).
    [Crossref]
  17. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957-967 (2005).
    [Crossref]
  18. C. Flueraru, H Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach-Zehnder interferometer with application in optical coherence tomography,” J. Opt. A Pure Appl. Opt. 9, L5-L8 (2007).
    [Crossref]
  19. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. , 241484-1486(1999).
  20. S. K. Sheem, “Optical fiber interferometers with [3×3] directional couplers: analysis,” J. Appl. Phys. 52, 3865-3872 (1981).
    [Crossref]
  21. R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microwave Theory Tech. MTT-30, 1589-1591 (1982).
    [Crossref]
  22. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005).
    [Crossref]

2007 (1)

C. Flueraru, H Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach-Zehnder interferometer with application in optical coherence tomography,” J. Opt. A Pure Appl. Opt. 9, L5-L8 (2007).
[Crossref]

2006 (2)

2005 (3)

2004 (2)

2003 (5)

1999 (1)

1998 (1)

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
[Crossref]

1995 (1)

F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref]

1987 (2)

1982 (1)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microwave Theory Tech. MTT-30, 1589-1591 (1982).
[Crossref]

1981 (1)

S. K. Sheem, “Optical fiber interferometers with [3×3] directional couplers: analysis,” J. Appl. Phys. 52, 3865-3872 (1981).
[Crossref]

Appl. Opt. (1)

IEEE Trans. Microwave Theory Tech. (1)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE Trans. Microwave Theory Tech. MTT-30, 1589-1591 (1982).
[Crossref]

J Biomed. Opt. (1)

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar--new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21-31 (1998).
[Crossref]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometers with [3×3] directional couplers: analysis,” J. Appl. Phys. 52, 3865-3872 (1981).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

C. Flueraru, H Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach-Zehnder interferometer with application in optical coherence tomography,” J. Opt. A Pure Appl. Opt. 9, L5-L8 (2007).
[Crossref]

Opt. Commun. (1)

F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[Crossref]

Opt. Express (8)

M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957-967 (2005).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).

M. A. Choma, M. V. Saranic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523-10537 (2005).
[Crossref]

J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828 (2004).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005).
[Crossref]

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[Crossref]

Other (1)

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mach–Zehnder interferometer using a 3 × 3 fiber coupler to form two channel unbalanced (attenuation α = 1 ) and balanced (attenuation α = 0.5 ) differential detectors for acquiring real and imaginary parts of the interferometric signal. The 3 × 3 coupling ratio of 1 / 3 was assumed.

Fig. 2
Fig. 2

Theoretical waveforms before (a, b) and after (c, d) differential detection and after the quadrature signal calculations (e, f) with the attenuation α = 1 (a, c, e) and 0.5 (b, d, f), where α = 1.0 and 0.5 correspond to the unbalanced by a factor of 2 and balanced configurations, respectively.

Fig. 3
Fig. 3

The theoretical phase difference of the output signals verses power ratio for the two detector input signals.

Fig. 4
Fig. 4

Schematic diagram of the instantaneous complex conjugate resolved swept-source OCT system using the 3 × 3 MZI topology with unbalanced (no attenuators) and balanced (with attenuators in the doted line) differential schemes. The coupler ratios of the 3 × 3 coupler are 0.39 / 0.29 / 0.32 .

Fig. 5
Fig. 5

The experimental results of the complex conjugate artifact resolution with our 3 × 3 MZI SS-OCT in the unbalanced differential detection with P 33 1 / P 33 2 / P 33 3 = 0.39 / 0.29 / 0.32 configuration in 300 μm path length difference of the sample and reference arms. (a) The interferometric signals measured on detector one (light solid lines) and detector two (dotted lines). The measured phase shifts are 90 ° . (b) A-scan signals obtained by IFT from a single detector including the complex conjugate artifacts. (c) A-scan signals obtained by IFT directly from the output signals from the detectors with suppressions of the complex conjugate peaks of 27 dB . The artifact peaks in (b) and (c), denoted by asterisks, were due to reflections from the surface of the attenuating filter in the sample arm.

Fig. 6
Fig. 6

In vivo images of the head of a Poecilia Wingei fish acquired by our full-range swept-source optical coherence tomography using our 3 × 3 Mach–Zehnder interferometer with unbalanced differential detection technique. (a) The image was generated using only a single detector. (b) The complex signal was used.

Tables (1)

Tables Icon

Table 1 A summary of measured SNR of different A-scans by real a and complex b inverse Fourier transform, phase difference of the output signals, and the complex conjugate artifact suppression for the 3 × 3 SS-OCT with the two unbalanced detections and the two corresponding balanced configurations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M 2 × 2 50 / 50 = [ 0.5 j 0.5 j 0.5 0.5 ]
M 2 × 2 9 0 / 1 0 = [ 0.9 j 0.1 j 0.1 0.9 ]
M 3 × 3 = e j 2 K cpl 3 [ 1 1 1 1 1 1 1 1 1 ] + e j 2 K cpl 3 [ 2 1 1 1 2 1 1 1 2 ] ,
E 33 ( φ ) = M 3 × 3 M φ ( ϕ ) M 2 × 2 90 / 10 E in .
E 22 1 ( ϕ ) = M 2 × 2 50 / 5 0 E in 2 × 2 ( ϕ ) ,
E 22 2 ( ϕ ) = M 2 × 2 50 / 5 0 E in 2 × 2 ( ϕ ) .
P E * E .
P 1 ( ϕ ) = α P 33 1 ( ϕ ) P 22 1 ( ϕ ) ,
P 2 ( ϕ ) = α P 33 3 ( ϕ ) P 22 2 ( ϕ ) .
P RE ( ϕ ) = P 1 ( ϕ ) ,
P IM ( ϕ ) = P 1 ( ϕ ) cos ( Δ ϕ ) P 2 ( ϕ ) sin ( Δ ϕ ) .

Metrics