Abstract

A laser spectroscopic system based on a cw difference-frequency generation source with a ratiometric multipass absorption detection scheme was employed for high-resolution spectroscopic investigation of gas-phase monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA). Possible application of the system as a noninvasive human breath analyzer for renal and liver diseases is targeted. The system operates in the fundamental CH stretch absorption region around 27402860cm1. A detection sensitivity of 2×106cm1Hz1/2 (for signal-to-noise ratio SNR=1) is achieved, corresponding to detection limits of 900ppb (parts in 109) for MMA, 450ppb for DMA, and 120ppb for TMA in mixtures containing H2O and CO2 with concentrations of up to those present in human breath (2% and 5%, respectively). Future developments are discussed to further improve these detection limits that are currently still about 2 orders of magnitude higher than required for direct methylamine monitoring in human breath.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription