Abstract

A laser spectroscopic system based on a cw difference-frequency generation source with a ratiometric multipass absorption detection scheme was employed for high-resolution spectroscopic investigation of gas-phase monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA). Possible application of the system as a noninvasive human breath analyzer for renal and liver diseases is targeted. The system operates in the fundamental CH stretch absorption region around 27402860cm1. A detection sensitivity of 2×106cm1Hz1/2 (for signal-to-noise ratio SNR=1) is achieved, corresponding to detection limits of 900ppb (parts in 109) for MMA, 450ppb for DMA, and 120ppb for TMA in mixtures containing H2O and CO2 with concentrations of up to those present in human breath (2% and 5%, respectively). Future developments are discussed to further improve these detection limits that are currently still about 2 orders of magnitude higher than required for direct methylamine monitoring in human breath.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. M. Studer, J. B. Orens, I. Rosas, J. A. Krishnan, K. A. Cope, S. Yang, J. V. Conte, P. B. Becker, and T. H. Risby, “Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection,” J. Heart Lung Transplant 20, 1158-1166 (2001).
    [CrossRef] [PubMed]
  2. S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: preliminary study,” Biomarkers 7, 174-187 (2002).
    [CrossRef] [PubMed]
  3. A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrom. 239, 227-233 (2004).
    [CrossRef]
  4. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421-426 (2006).
    [CrossRef]
  5. S. A. Kharitonov and P. J. Barnes, “Exhaled markers of pulmonary disease,” Am. J. Respir. Crit. Care Med. 163, 1693-1722 (2001).
    [PubMed]
  6. D. Smith, A. M. Diskin, Y. F. Ji, and P. Spanel, “Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry,” Int. J. Mass Spectrom. 209, 81-97 (2001).
    [CrossRef]
  7. W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control, and environmental research,” Int. J. Mass. Spectrom. Ion Processes 173, 191-241 (1998).
    [CrossRef]
  8. F. J. M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, and D. H. Parker, “On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin,” Appl. Phys. Lett. 74, 1761-1763 (1999).
    [CrossRef]
  9. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. G. Machl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859-863 (2001).
  10. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, “Nitric oxide breath testing using tunable diode laser absorption spectroscopy: application in respiratory inflammation monitoring,” Appl. Opt. 41, 6018-6029 (2002).
    [CrossRef] [PubMed]
  11. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040-6046 (2004).
    [CrossRef] [PubMed]
  12. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85, 437-443 (2006).
    [CrossRef]
  13. J. Manne, O. Suchkorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230-9237 (2006).
    [CrossRef] [PubMed]
  14. D. Marinov, J. M. Rey, M. G. Müller, and M. W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown based spectrometer,” Appl. Opt. 46, 3981-3986 (2007).
    [CrossRef] [PubMed]
  15. M. L. Simenhoff, J. F. Burke, J. J. Saukkonen, A. T. Ordinario, and R. Doty, “Biochemical profile of uremic breath,” N. Engl. J. Med. 297, 132-135, (1977).
    [CrossRef] [PubMed]
  16. S. C. Mitchell and A. Q. Zhang, “Methylamine in human urine,” Clin. Chim. Acta 312, 107-114 (2001).
    [CrossRef] [PubMed]
  17. A. Q. Zhang, S. C. Mitchell, T. Barrett, R. Ayesh, and R. L. Smith, “Fate of dymethylmine in man,” Xenobiotica 24 (4), 379-387 (1994).
    [CrossRef] [PubMed]
  18. D. Hernandez, S. Addou, D. Lee, C. Orengo, E. A. Shephard, and I. R. Phillips, “Trimethylaminuria and a human FMO3 mutation database,” Hum. Mutat. 22, 209-213 (2003).
    [CrossRef] [PubMed]
  19. M. A. Bain, G. Fornasini, and A. M. Evans, “Trimethylamine: metabolic pharmacokinetic and safety aspects,” Curr. Drug Metab. 6, 227-240 (2005).
    [CrossRef] [PubMed]
  20. M. L. Simenhoff, J. J. Saukkonen, J. F. Burke, L. G. Wessen Jr., R. W. Schaedler, and S. J. Gordon, “Bacterial populations of the small intestine in uremia,” Nephron 22, 63-68 (1978).
    [CrossRef] [PubMed]
  21. M. A. Bain, R. Faull, G. Fornasini, R. W. Milne, and A. M. Evans, “Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis,” Nephrol. Dial. Transplant. 21, 1300-1304 (2006).
    [CrossRef] [PubMed]
  22. H. U. Rehman, “Fish odour syndrome,” Postgrad. Med. J. 75, 451-452 (1999).
  23. S. Mitchell, R. Ayesh, T. Barrett, and R. Smith, “Trimethylamine and foetor hepaticus,” Scand. J. Gastroenterol. 34, 524-528 (1999).
    [CrossRef] [PubMed]
  24. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004).
    [CrossRef] [PubMed]
  25. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  26. O. Tadanaga, Ynishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, “Diode-laser based 3 mW DFG at 3.4 μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide,” Electron. Lett. 42, 988-989 (2006).
    [CrossRef]
  27. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  28. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173-180 (2006).
    [CrossRef]

2007 (1)

2006 (7)

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85, 437-443 (2006).
[CrossRef]

J. Manne, O. Suchkorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230-9237 (2006).
[CrossRef] [PubMed]

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421-426 (2006).
[CrossRef]

M. A. Bain, R. Faull, G. Fornasini, R. W. Milne, and A. M. Evans, “Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis,” Nephrol. Dial. Transplant. 21, 1300-1304 (2006).
[CrossRef] [PubMed]

O. Tadanaga, Ynishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, “Diode-laser based 3 mW DFG at 3.4 μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide,” Electron. Lett. 42, 988-989 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173-180 (2006).
[CrossRef]

2005 (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

M. A. Bain, G. Fornasini, and A. M. Evans, “Trimethylamine: metabolic pharmacokinetic and safety aspects,” Curr. Drug Metab. 6, 227-240 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

D. Hernandez, S. Addou, D. Lee, C. Orengo, E. A. Shephard, and I. R. Phillips, “Trimethylaminuria and a human FMO3 mutation database,” Hum. Mutat. 22, 209-213 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (5)

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. G. Machl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859-863 (2001).

S. C. Mitchell and A. Q. Zhang, “Methylamine in human urine,” Clin. Chim. Acta 312, 107-114 (2001).
[CrossRef] [PubMed]

S. M. Studer, J. B. Orens, I. Rosas, J. A. Krishnan, K. A. Cope, S. Yang, J. V. Conte, P. B. Becker, and T. H. Risby, “Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection,” J. Heart Lung Transplant 20, 1158-1166 (2001).
[CrossRef] [PubMed]

S. A. Kharitonov and P. J. Barnes, “Exhaled markers of pulmonary disease,” Am. J. Respir. Crit. Care Med. 163, 1693-1722 (2001).
[PubMed]

D. Smith, A. M. Diskin, Y. F. Ji, and P. Spanel, “Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry,” Int. J. Mass Spectrom. 209, 81-97 (2001).
[CrossRef]

1999 (3)

F. J. M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, and D. H. Parker, “On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin,” Appl. Phys. Lett. 74, 1761-1763 (1999).
[CrossRef]

H. U. Rehman, “Fish odour syndrome,” Postgrad. Med. J. 75, 451-452 (1999).

S. Mitchell, R. Ayesh, T. Barrett, and R. Smith, “Trimethylamine and foetor hepaticus,” Scand. J. Gastroenterol. 34, 524-528 (1999).
[CrossRef] [PubMed]

1998 (1)

W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control, and environmental research,” Int. J. Mass. Spectrom. Ion Processes 173, 191-241 (1998).
[CrossRef]

1994 (1)

A. Q. Zhang, S. C. Mitchell, T. Barrett, R. Ayesh, and R. L. Smith, “Fate of dymethylmine in man,” Xenobiotica 24 (4), 379-387 (1994).
[CrossRef] [PubMed]

1978 (1)

M. L. Simenhoff, J. J. Saukkonen, J. F. Burke, L. G. Wessen Jr., R. W. Schaedler, and S. J. Gordon, “Bacterial populations of the small intestine in uremia,” Nephron 22, 63-68 (1978).
[CrossRef] [PubMed]

1977 (1)

M. L. Simenhoff, J. F. Burke, J. J. Saukkonen, A. T. Ordinario, and R. Doty, “Biochemical profile of uremic breath,” N. Engl. J. Med. 297, 132-135, (1977).
[CrossRef] [PubMed]

Am. J. Respir. Crit. Care Med. (1)

S. A. Kharitonov and P. J. Barnes, “Exhaled markers of pulmonary disease,” Am. J. Respir. Crit. Care Med. 163, 1693-1722 (2001).
[PubMed]

Appl. Opt. (4)

Appl. Phys. B (4)

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85, 437-443 (2006).
[CrossRef]

L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. G. Machl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859-863 (2001).

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421-426 (2006).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173-180 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

F. J. M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, and D. H. Parker, “On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin,” Appl. Phys. Lett. 74, 1761-1763 (1999).
[CrossRef]

Appl. Spectrosc. (1)

Biomarkers (1)

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: preliminary study,” Biomarkers 7, 174-187 (2002).
[CrossRef] [PubMed]

Clin. Chim. Acta (1)

S. C. Mitchell and A. Q. Zhang, “Methylamine in human urine,” Clin. Chim. Acta 312, 107-114 (2001).
[CrossRef] [PubMed]

Curr. Drug Metab. (1)

M. A. Bain, G. Fornasini, and A. M. Evans, “Trimethylamine: metabolic pharmacokinetic and safety aspects,” Curr. Drug Metab. 6, 227-240 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

O. Tadanaga, Ynishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, “Diode-laser based 3 mW DFG at 3.4 μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide,” Electron. Lett. 42, 988-989 (2006).
[CrossRef]

Hum. Mutat. (1)

D. Hernandez, S. Addou, D. Lee, C. Orengo, E. A. Shephard, and I. R. Phillips, “Trimethylaminuria and a human FMO3 mutation database,” Hum. Mutat. 22, 209-213 (2003).
[CrossRef] [PubMed]

Int. J. Mass Spectrom. (2)

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrom. 239, 227-233 (2004).
[CrossRef]

D. Smith, A. M. Diskin, Y. F. Ji, and P. Spanel, “Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry,” Int. J. Mass Spectrom. 209, 81-97 (2001).
[CrossRef]

Int. J. Mass. Spectrom. Ion Processes (1)

W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control, and environmental research,” Int. J. Mass. Spectrom. Ion Processes 173, 191-241 (1998).
[CrossRef]

J. Heart Lung Transplant (1)

S. M. Studer, J. B. Orens, I. Rosas, J. A. Krishnan, K. A. Cope, S. Yang, J. V. Conte, P. B. Becker, and T. H. Risby, “Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection,” J. Heart Lung Transplant 20, 1158-1166 (2001).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

N. Engl. J. Med. (1)

M. L. Simenhoff, J. F. Burke, J. J. Saukkonen, A. T. Ordinario, and R. Doty, “Biochemical profile of uremic breath,” N. Engl. J. Med. 297, 132-135, (1977).
[CrossRef] [PubMed]

Nephrol. Dial. Transplant. (1)

M. A. Bain, R. Faull, G. Fornasini, R. W. Milne, and A. M. Evans, “Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis,” Nephrol. Dial. Transplant. 21, 1300-1304 (2006).
[CrossRef] [PubMed]

Nephron (1)

M. L. Simenhoff, J. J. Saukkonen, J. F. Burke, L. G. Wessen Jr., R. W. Schaedler, and S. J. Gordon, “Bacterial populations of the small intestine in uremia,” Nephron 22, 63-68 (1978).
[CrossRef] [PubMed]

Postgrad. Med. J. (1)

H. U. Rehman, “Fish odour syndrome,” Postgrad. Med. J. 75, 451-452 (1999).

Scand. J. Gastroenterol. (1)

S. Mitchell, R. Ayesh, T. Barrett, and R. Smith, “Trimethylamine and foetor hepaticus,” Scand. J. Gastroenterol. 34, 524-528 (1999).
[CrossRef] [PubMed]

Xenobiotica (1)

A. Q. Zhang, S. C. Mitchell, T. Barrett, R. Ayesh, and R. L. Smith, “Fate of dymethylmine in man,” Xenobiotica 24 (4), 379-387 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Physical structures of methylated amines.

Fig. 2
Fig. 2

Schematic setup of the DFG system. ECDL, external cavity diode laser; APP, anamorphic prism pair; HWP, half-wave plate; BS, beam splitter; PMF, polarization maintaining fiber; WM, wavemeter; BC, beam combiner; L, lenses; PPLN, periodically poled lithium niobate crystal; GE, germanium filter; AP, aperture; M, mirrors; MPOC, multipass optical cell; HQWP, half- and quarter- wave plate pair; CH, chopper; PD, photo-detectors; CHC, chopper contrquery>4/COroller.

Fig. 3
Fig. 3

Wide scans of 14.5 ppm MMA and 28 ppm DMA taken by the DFG system at 950   hPa total pressure and room temperature of 21 ° C . The solid traces indicate the corresponding absorptions according to the PNNL quantitative database. The solid trace in the inset represents the etalon effect fringes of the multipass cell transmission.

Fig. 4
Fig. 4

Wide scan of 7.5 ppm TMA buffered in pure nitrogen with the DFG system at 950   hPa pressure and room temperature of 21 ° C . Two characteristic absorption features are examined in the insets. The calculated absorption expected from a mixture of 2% H 2 O and 5% CO 2 according to the HITRAN database is also plotted with a 10 × magnification (transmission axis on the right-hand side). While the H 2 O absorption can well be seen with this magnification on the right-hand side, the CO 2 absorption is still hardly visible on the top.

Fig. 5
Fig. 5

Wide scan of mixture of 42 ppm MMA and 6.3 ppm TMA with the DFG system at 950     hPa pressure. Two characteristic absorption features are examined in the captions. The solid trace represents the corresponding transmission according to the PNNL datquery>4/CO

Tables (1)

Tables Icon

Table 1 Absorption Features and Detection Limits of the Methylamines with Different Detection Schemes a

Metrics