Abstract

We demonstrate a dual wavelength acousto-optic deflector (AOD) designed to deflect two wavelengths to the same angles by driving with two RF frequencies. The AOD is designed as a beam scanner to address two-photon transitions in a two-dimensional array of trapped neutral Rb87 atoms in a quantum computer. Momentum space is used to design AODs that have the same diffraction angles for two wavelengths (780 and 480nm) and have nonoverlapping Bragg-matched frequency response at these wavelengths, so that there will be no cross talk when proportional frequencies are applied to diffract the two wavelengths. The appropriate crystal orientation, crystal shape, transducer size, and transducer height are determined for an AOD made with a tellurium dioxide crystal (TeO2). The designed and fabricated AOD has more than 100 resolvable spots, widely separated band shapes for the two wavelengths within an overall octave bandwidth, spatially overlapping diffraction angles for both wavelengths (780 and 480nm), and a 4μs or less access time. Cascaded AODs in which the first device upshifts and the second downshifts allow Doppler-free scanning as required for addressing the narrow atomic resonance without detuning. We experimentally show the diffraction-limited Doppler-free scanning performance and spatial resolution of the designed AOD.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484-1509 (1997).
    [CrossRef]
  3. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
    [CrossRef]
  4. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
    [CrossRef]
  5. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
    [CrossRef]
  6. J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
    [CrossRef] [PubMed]
  7. T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853-898 (2006).
    [CrossRef]
  8. D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
    [CrossRef] [PubMed]
  9. D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
    [CrossRef] [PubMed]
  10. M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
    [CrossRef]
  11. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
    [CrossRef]
  12. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
    [CrossRef] [PubMed]
  13. M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
    [CrossRef]
  14. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
    [PubMed]
  15. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545-6555 (2000).
    [CrossRef]
  16. L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
    [CrossRef]
  17. L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
    [CrossRef]
  18. C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
    [CrossRef]
  19. F. W. Freyre, “Zero frequency shift Bragg cell beam deflection and translation,” Appl. Opt. 20, 3896-3900 (1981).
    [CrossRef] [PubMed]
  20. F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15, 3589-3596(2007).
    [CrossRef] [PubMed]
  21. R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.
  22. A. Yariv and P. Yeh, ,i>Optical Waves in Crystals (Wiley-Interscience, 2003).
  23. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, 1995).
  24. R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996).
    [CrossRef] [PubMed]
  25. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736-3745 (1971).
    [CrossRef]
  26. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
  27. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley-Interscience, 1992).
  28. A. Fukumoto, M. Kawabuchi, and H. Hayami, “Polarization considerations in the operation of an two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812-813 (1975).
    [CrossRef] [PubMed]
  29. P. S. Guilfoyle, “Problems in two dimensions,” Proc. SPIE 341, 199-208 (1982).
  30. A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
    [CrossRef]
  31. T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
    [CrossRef]
  32. P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
    [CrossRef]
  33. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
    [CrossRef] [PubMed]

2007 (4)

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15, 3589-3596(2007).
[CrossRef] [PubMed]

2006 (2)

T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853-898 (2006).
[CrossRef]

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[CrossRef]

2004 (1)

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

2001 (2)

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

2000 (2)

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545-6555 (2000).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

1999 (2)

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

1998 (1)

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
[CrossRef]

1997 (2)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484-1509 (1997).
[CrossRef]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

1996 (1)

1987 (1)

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

1982 (1)

P. S. Guilfoyle, “Problems in two dimensions,” Proc. SPIE 341, 199-208 (1982).

1981 (1)

1975 (2)

A. Fukumoto, M. Kawabuchi, and H. Hayami, “Polarization considerations in the operation of an two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812-813 (1975).
[CrossRef] [PubMed]

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

1972 (1)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
[CrossRef]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736-3745 (1971).
[CrossRef]

An, D.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

Barosci, A.

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Bashkansky, M.

Beugnon, J.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Blatt, R.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

Bonner, W. A.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
[CrossRef]

Brennen, G. K.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

Breyta, G.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

Browaeys, A.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Brune, M.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

Caves, C. M.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

Chen, R. T.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Chuang, I. L.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Cirac, J. I.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Côté, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Dalton, L. R.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Davidovich, L.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

de Groot, P. C.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

Deutsch, I. H.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

Dotsenko, I.

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

Dutton, Z.

Fatemi, F. K.

Freyre, F. W.

Fukumoto, A.

A. Fukumoto, M. Kawabuchi, and H. Hayami, “Polarization considerations in the operation of an two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812-813 (1975).
[CrossRef] [PubMed]

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Gaëtan, A.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Garvin, C.

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Goldstein, E. L.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
[CrossRef]

Goy, P.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

Grangier, P.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

Guilfoyle, P. S.

P. S. Guilfoyle, “Problems in two dimensions,” Proc. SPIE 341, 199-208 (1982).

Harmans, C. J. P. M.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

Haroche, S.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

Hayami, H.

Henage, T.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Isenhower, L.

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Jakab, L.

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Jaksch, D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Jang, C.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Jessen, P. S.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

Johnson, T. A.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Jones, M. P. A.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Kawabuchi, M.

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

A. Fukumoto, M. Kawabuchi, and H. Hayami, “Polarization considerations in the operation of an two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812-813 (1975).
[CrossRef] [PubMed]

Khudaverdyan, M.

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

Kim, C.

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

Kim, J.

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Knoernschild, C.

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

Kulatunga, P. B.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

Leibfried, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

Lin, L. Y.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
[CrossRef]

Liu, B.

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

Lu, X.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Lukin, M. D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Maak, P.

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Maker, P.

Maki, J. J.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Mcleod, R.

R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, 1995).

McLeod, R. R.

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Messin, G.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Miroshnychenko, Y.

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

Monroe, C.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

Mooij, J. E.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

Muller, R.

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Plantenberg, J. H.

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

Proite, N.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

Psaltis, D.

Raimond, J. M.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

Ralph, T. C.

T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853-898 (2006).
[CrossRef]

Richter, P.

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Saffman, M.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Schrader, D.

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

Sherwood, M. H.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

Shor, P. W.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484-1509 (1997).
[CrossRef]

Steffen, M.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

Steler, W. H.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley-Interscience, 1992).

Sun, L.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Taboada, J. M.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Tang, S.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Tkach, R. W.

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
[CrossRef]

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736-3745 (1971).
[CrossRef]

Urban, E.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Vandersypen, L. M. K.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

Wagner, K.

R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Walker, T. G.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[CrossRef]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Wang, X.

Warner, A. W.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
[CrossRef]

Watanabe, A.

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Weverka, R. T.

R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

White, D. L.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
[CrossRef]

Wilson, D.

Wineland, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

Wu, K.

R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley-Interscience, 1992).

Yannoni, C. S.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

Yano, T.

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, ,i>Optical Waves in Crystals (Wiley-Interscience, 2003).

Yavuz, D. D.

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

Yeh, P.

A. Yariv and P. Yeh, ,i>Optical Waves in Crystals (Wiley-Interscience, 2003).

Zhang, C.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Zhang, H.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Zhang, J.

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

Zhou, Q.

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Zoller, P.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998).
[CrossRef]

J. Appl. Phys. (1)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972).
[CrossRef]

Nature (2)

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001).
[CrossRef]

J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Opt. Eng. (1)

L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007).
[CrossRef]

M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005).
[CrossRef]

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736-3745 (1971).
[CrossRef]

Phys. Rev. Lett. (7)

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987).
[CrossRef] [PubMed]

T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ).
[PubMed]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000).
[CrossRef] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).
[CrossRef] [PubMed]

D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. S. Guilfoyle, “Problems in two dimensions,” Proc. SPIE 341, 199-208 (1982).

Rep. Prog. Phys. (1)

T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853-898 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003).
[CrossRef]

SIAM J. Comput. (1)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484-1509 (1997).
[CrossRef]

Other (6)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley-Interscience, 1992).

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

A. Yariv and P. Yeh, ,i>Optical Waves in Crystals (Wiley-Interscience, 2003).

R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Rydberg atom quantum processor with a 2D array of trapped atoms, (b) two-level Rydberg excitation using two wavelengths ( 780 nm / 480 nm ).

Fig. 2
Fig. 2

(a) Real-space view of AO diffraction. A single frequency applied rf signal produces a sinusoidal grating inside the AO medium, which diffracts the incident plane wave with an angle 2 θ . (b) Momentum space representation of AO diffraction for an acoustically and optically rotated TeO 2 device. As the frequency increases, the coupling efficiency between the uncertainty distribu tion and optical momentum surface gives the rf band shape of the AOD. (c) AO band shape with slight angle detuning gives the 3 dB ripple band shape.

Fig. 3
Fig. 3

(a) Three-dimensional TeO 2 slowness surfaces with three different acoustic polarizations and the transducer Fourier transform P ( K y , K z ) projected onto the surface for an acoustically rotated geometry [23]. (b) Top view of TeO 2 slowness surface. Along [ 110 ] , the acoustic velocity is extremely slow, which results in high diffraction efficiency. The indicated slow shear wave acoustic polarization remains nearly constant as the propagation direction deviates from [ 110 ] .

Fig. 4
Fig. 4

(a) Three-dimensional momentum space showing the tangentially phase-matched AO interaction around the z axis with an exaggerated splitting due to optical activity and a corresponding exaggerated acoustic frequency [23]. (b) Optically rotated AO interaction in TeO 2 . (c) Eigenpolarization of a TeO 2 crystal near the optic axis for a wavelength of 780 nm over a range of ± 10 ° . The eigenpolarization is circular near the optic axis and changes to linear polarization as the angle deviates by a few degrees away from the optic axis.

Fig. 5
Fig. 5

(a) Solid curve is the linear birefringence Δ n l , and the dashed line is the circular birefringence Δ n c at 780 nm wavelength. (b) Ellipticity ξ as a function of angle from the z axis. (c) Difference of the TeO 2 indices of refraction when there is optical activity and when there is no optical activity as a function of the angle θ from the z axis.

Fig. 6
Fig. 6

(a) Experimental setup for demonstrating multicolor Doppler-free AO diffraction at two wavelengths ( 633 nm / 532 nm ). (b) RF band shape of the TeO 2 AOD at 633 nm using tangential phase-matching geometry. (c) Band shape of the TeO 2 AOD at 532 nm . The center frequency is higher at the shorter wavelength. (d) Diffracted spots from the second AOD when driven by the two radio frequencies. The spot at the center is the deflected Doppler-free position where the two wavelengths overlap, while the other six are undesired cross diffractions.

Fig. 7
Fig. 7

(a) Momentum-space conceptual design of two-color spatially overlapping diffraction using anisotropic diffraction. (b) Dual band shape for the two wavelengths are completely separated, enabling only a single overlapping Doppler-free deflection to be produced at both colors simultaneously. (c) Real-space design for the dual rf input AOD for two-color diffraction. The AOD prism cut allows Bragg matching for parallel two-color inputs and yields an undeviated midband output for both colors.

Fig. 8
Fig. 8

(a) Symmetry of the momentum surfaces allows the second order rediffraction of the first order beam on the inner momentum surface to the outer momentum surface for frequencies near the middle of the band shape. (b) As the applied rf power increases, the phase-matched ordinary inner momentum surface to the extraordinary outer momentum surface diffraction causes a dip that increases with the applied rf power in the middle of AO band shapes (shown in different dotted curves).

Fig. 9
Fig. 9

(a) Optical momentum space showing degenerate double diffraction. As the applied frequency changes, the acoustic momentum vector changes its length proportionally and diffracts light from the extraordinary outer to the ordinary inner momentum surface. However, part of this diffracted light can rediffract from the inner to the outer optical momentum surface (degenerate diffraction) unless sufficient acoustic rotation away from the symmetric condition breaks the symmetry required for this double diffraction. (b) With two degrees of acoustic rotation, the degenerate diffraction is inside our usable bandwidth. (c) With three degrees of acoustic rotation, the degenerate diffraction dip is just outside our usable bandwidth.

Fig. 10
Fig. 10

(a) Figure-of-merit surface as a function of acoustic rotation and optical rotations in degrees. (b) Topview of the figure-of-merit surface showing optimum point at 10 ° optical rotation and 3 ° acoustic rotation.

Fig. 11
Fig. 11

(a) Band shape of the designed AO device with a 20 mm transducer length shown in the angular domain and demonstrating good overlap between the two wavelengths ( 780 / 480 nm ) and centered at 3 ° (the acoustic rotation angle); 780 nm band shape is plotted with a solid curve and 480 nm band shape is plotted with a dotted curve. Octave bandwidth limits are delimited by the vertical lines. (b) Since such a large transducer is difficult to impedance match, a smaller 5 mm long transducer was evaluated and is shown to have wider bandwidth and angular scan width. However, the delineated octave bandwidth limit is about the same as the 20 mm transducer, although the efficiency is four times lower.

Fig. 12
Fig. 12

(a) Diamond-shaped transducer with 8 mm length and 4 mm height. (b) Fourier transform of diamond-shaped transducer and Bragg-matched loci due to the momentum surface intersections. (c)  k z -dimensional cross section of the Fourier plane. (d) Beam propagation of rectangular- and diamond-shaped transducer.

Fig. 13
Fig. 13

(a) Top view of the designed AOD showing a prism wedge cut for optical input face and acoustic walk-off. (b) Side view of the designed AOD showing 10 ° optically rotated input face with two diamond-shaped transducer electrodes ( 5 mm and 75% truncated 8 mm ). (c) Expected band shape for 780 nm / 408 nm with 5 mm transducer.

Fig. 14
Fig. 14

Comparison of the designed ( 780 / 408 nm ) and measured ( 785 / 476 nm ) band shape of the fabricated AOD. Band shapes for 780 and 408 nm wavelength are well separated in the rf domain and have 30 MHz of bandwidth. Theoretical band shape at 785 / 476 nm is also shown, which is down- and upshifted compared with the 780 / 480 nm design. The measured electroacoustic band shape at 785 / 476 nm is also shown.

Fig. 15
Fig. 15

Experimental setup and dual wavelength of Doppler-free scanner demonstration. (a) First AOD with positive Doppler-shifted diffracted light is imaged onto the second 90 ° rotated AOD, which cancels the Doppler shift with minus order diffraction when driven with the same frequency. (b) Image of the 1D Doppler-free scan (y scan) is shown. (c) Due to the frequency separation of the band shapes for the two colors, there are no undesired diffractions when two separate frequencies ( 100 / 180 MHz ) were applied to the AODs. (d) Doppler-free operation was verified by the stationary interference pattern between the laser reference and the doubly diffracted beam.

Fig. 16
Fig. 16

(a) Experimental setup for measuring the achievable spot size of the cascaded AODs and optical system. (b) Measured spot at 476 nm wavelength of 4.2 μm 1 / e 2 intensity width . The inset shows a magnified spot image produced by a 750 mm focal length lens placed after the cascaded AODs that is captured by a CCD camera and shows low aberration. (c) Measured spot at 785 nm wavelength of 5.9 μm 1 / e 2 intensity width also shows low aberration at a 785 nm wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ η ̲ ̲ ( r , t ) = 1 ( 2 π ) 2 p ̲ ̲ ̲ ̲ S ^ ̲ ̲ ( K y , K z ) ( S ^ ̲ ̲ T · S ^ ̲ ̲ ( K y , K z ) ) A ( K y , K z ) 1 2 π R ( Ω ) exp [ i ( Ω t - ( [ Ω / V a ( K y , K z ) ] 2 - K y 2 - K z 2 x + K y y + K z z ) ) ] d Ω d K y d K z ,
Δ ϵ ̲ ̲ ( r , t ) = ϵ ̲ ̲ Δ η ̲ ̲ ( r , t ) ϵ ̲ ̲ ,
E d ω d ( k x , k y , L ) = i ω d 2 2 c 2 k z d q ( k x , k y ) δ ( k z - k z d q ( k x , k y ) ) F r { Δ ϵ ̲ ̲ ( r , Ω ) E i * ( r , ω ) } · p ^ q ( k x , k y ) d k z
η I d I 0 = sin 2 [ π 2 P a L 2 λ 2 H M 2 ] 1 / 2 ,
Z 0 = D 2 b Λ a ,
ξ = Δ n c ( θ ) Δ n ( θ ) + Δ n l ( θ ) ,
figure of merit = BW blue + BW red - BW ovoctv crystal volume · U hflimit · F midgen ,

Metrics