Abstract

Detection of uranium in solids by using laser-induced breakdown spectroscopy has been investigated in combination with laser-induced fluorescence. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462ppm in a glass sample can be detected by using this technique at an excitation wavelength of 385.96nm for resonant excitation of U II and a fluorescence line wavelength of 409.0nm from U II.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
    [CrossRef]
  2. D. Anglos, K. Melesanaki, V. Zafiropulos, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analysis of 150-year-old daguerreotypes,” Appl. Spectrosc. 56, 423-432 (2002).
    [CrossRef]
  3. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).
  4. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
    [CrossRef]
  5. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).
  6. L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, “Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of U238 using multistep laser phonoionization,” J. Opt. Soc. Am. 66, 846-853 (1976).
    [CrossRef]
  7. J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042-1048 (1987).
    [CrossRef]
  8. R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
    [CrossRef] [PubMed]
  9. H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
    [CrossRef]
  10. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
    [CrossRef]
  11. H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
    [CrossRef]
  12. I. Gobernado-Mitre, A. C. Prieto, V. Zafiropulos, Y. Spetsidou, and C. Fotakis, “On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence,” Appl. Spectrosc. 51, 1125-1129 (1997).
    [CrossRef]
  13. A. Coste, R. Avril, P. Blancard, J. Chatelet, D. Lambert, J. Legree, S. Liberman, and J. Pinard, “New spectroscopic data on high-lying excited levels of atomic uranium,” J. Opt. Soc. Am. 72, 103-109 (1982).
    [CrossRef]

2002 (1)

2001 (3)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

2000 (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

1999 (2)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

1997 (1)

1987 (1)

1982 (1)

1979 (2)

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

1976 (1)

Anglos, D.

Avril, R.

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Beddows, D. C. S

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Blancard, P.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Carlson, L. R.

Chatelet, J.

Coste, A.

Cremers, D. A.

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Fotakis, C.

Gobernado-Mitre, I.

Gresalfi, M. J.

Hahn, D. W.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Johnson, S. A.

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Kwong, H. S.

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

Lambert, D.

Legree, J.

Liberman, S.

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Lunden, M. M.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

May, C. A.

Measures, R. M.

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

Melesanaki, K.

Miller, J. C.

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Paisner, J. A.

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Pinard, J.

Prieto, A. C.

Samek, O.

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

Solarz, R. W.

Spetsidou, Y.

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

Telle, H. H.

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Wachter, J. R.

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

Worden, E. F.

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

Zafiropulos, V.

Zhang, H.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

Aerosol Sci. Technol. (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Anal. Chem. (1)

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Appl. Spectrosc. (3)

J. Opt. Soc. Am. (2)

Recent Res. Devel. Appl. Spectrosc. (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Recent Res. Devel. Appl. Spectrosc. 2, 59-67 (1999).

Spectrochim. Acta Part B (3)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry--applications for production control and quality assurance in the steel industry, ” Spectrochim. Acta Part B 56, 637-649(2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933-945 (2001).
[CrossRef]

H. H. Telle, D. C. S Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of the experimental setup for LIBS-LIF.

Fig. 2
Fig. 2

LIBS-LIF (solid curves) and LIBS (dashed curves) spectra of a uranium glass from NIST and the partial Grotrian diagrams for aluminum atoms and calcium ions. (a) The OPO tunable laser was operated at 309.28 nm to resonantly excite Al I;(b) the OPO tunable laser was operated at 393.37 nm to resonantly excite Ca II.

Fig. 3
Fig. 3

LIBS-LIF (solid curves) and LIBS (dashed curves) spectra for a Vaseline uranium glass and the partial Grotrian diagrams for uranium atoms and ions. (a) The OPO tunable laser was operated at 348.94 nm to resonantly excite U I; (b) the OPO wavelength-tunable laser was operated at 385.96 nm to resonantly excite U II.

Fig. 4
Fig. 4

LIF (filled squares, solid curve) and LIBS (filled circles, dashed curve) signals for a uranium ionic transition line (U II at 409.0 nm ) as a function of the time delay between the two lasers.

Fig. 5
Fig. 5

LIBS-LIF (solid curve) and LIBS (dashed curve) spectra for the uranium glass from NIST. The OPO wavelength-tunable laser was operated at 385.96 nm to resonantly excite U II.

Metrics