Abstract

We describe a design of a planar lightwave circuit for parallel information processing using visible light. The circuit serves as a pitch conversion component (PCC) that can align multiple beams close together and easily composes a compact optical system that can project optical spots at a narrow pitch on a certain small plane. From the viewpoint of its application to optical recording, a PCC is designed to have over 50 waveguides according to the fabrication of waveguides for a blue-violet beam. It is analytically confirmed that a PCC contributes to the formation of a multibeam optical recording head with numerous beams.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).
  2. H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).
  3. D. B. Carlin, J. P. Bednarz, C. J. Kaiser, J. C. Connolly, and M. G. Harvey, “Multichannel optical recording using monolithic arrays of diode lasers,” Appl. Opt. 23, 3994-4000 (1984).
  4. R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).
  5. R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
    [CrossRef]
  6. M. Shinoda, “Calculation of focal positions in an optical head for parallel data processing with a monolithic four-beam laser diode,” Appl. Opt. 40, 1065-1073 (2001).
    [CrossRef]
  7. H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
    [CrossRef]
  8. K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
    [CrossRef]
  9. K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.
  10. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38-45 (2000).
    [CrossRef]
  11. K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
    [CrossRef]
  12. D. Marcuse, “Length optimization of an S-shaped transition between offset optical waveguides,” Appl. Opt. 17, 763-768(1978).
  13. R. Baets and P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am. 73, 177-182 (1983).
  14. W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
    [CrossRef]
  15. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
    [CrossRef]
  16. M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
    [CrossRef]
  17. D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
    [CrossRef]
  18. J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133-2160(1969).
  19. Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
    [CrossRef]
  20. Asahi Glass Co., Ltd., CYTOP Tech. Bull. (1990).
  21. T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).
  22. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187-3215 (1969).
  23. K. Furuya and Y. Suematsu, “Random-bend loss in single-mode and parabolic-index multimode optical fiber cables,” Appl. Opt. 19, 1493-1500 (1980).
  24. K. Okamoto, Fundamentals of Optical Waveguides, Chap. 4 (Academic Press, 2000).
  25. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.
  26. T. Tamir, Integrated Optics, Chap. 2 (Springer-Verlag., 1975).
  27. J. Sakai, Guided Optics, Chap. 12 (Kyoritsu Shuppan, 2004) (in Japanese).
  28. E. A. J. Marcatili, “Bends in Optical Dielectric Guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).
  29. K. Maruyama and S. Takeuchi, Tech. Rep. ICICE, CPM2002-88 (2002) pp. 7-12 (in Japanese).

2007 (1)

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

2006 (3)

H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

2005 (1)

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

2004 (1)

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

2001 (1)

2000 (2)

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38-45 (2000).
[CrossRef]

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

1999 (1)

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

1998 (1)

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

1993 (1)

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

1989 (1)

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

1984 (2)

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).

D. B. Carlin, J. P. Bednarz, C. J. Kaiser, J. C. Connolly, and M. G. Harvey, “Multichannel optical recording using monolithic arrays of diode lasers,” Appl. Opt. 23, 3994-4000 (1984).

1983 (1)

1982 (1)

W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
[CrossRef]

1980 (1)

1978 (1)

1969 (3)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187-3215 (1969).

E. A. J. Marcatili, “Bends in Optical Dielectric Guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).

J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133-2160(1969).

Alferness, R. C.

W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
[CrossRef]

Arai, K.

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

Arai, R.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Baets, R.

Bednarz, J. P.

Bouwhuis, G.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Braat, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Carlin, D. B.

Connolly, J. C.

Dai, D.

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

Fujiki, M.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).

Furuya, K.

Goell, J. E.

J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133-2160(1969).

Harvey, M. G.

He, S.

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

Huijser, A.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Hunziker, W.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

Immink, K. S.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Jinguji, K.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).

Kadota, Y.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

Kaino, T.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).

Kaiser, C. J.

Katayama, R.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Katoh, K.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Kawamura, N.

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.

Kishida, M.

H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).

Kodate, K.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

Kohtoku, M.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

Koide, D.

H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).

Komai, Y.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

Korotky, S. K.

W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
[CrossRef]

Kubota, K.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Kuwana, Y.

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.

Lagasse, P. E.

Lanker, M.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in Optical Dielectric Guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).

Marcuse, D.

D. Marcuse, “Length optimization of an S-shaped transition between offset optical waveguides,” Appl. Opt. 17, 763-768(1978).

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187-3215 (1969).

Maruyama, K.

K. Maruyama and S. Takeuchi, Tech. Rep. ICICE, CPM2002-88 (2002) pp. 7-12 (in Japanese).

Melchior, H.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

Minford, W. J.

W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
[CrossRef]

Miya, T.

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38-45 (2000).
[CrossRef]

Mizukami, M.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Murata, S.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Nadler, C. K.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

Nagano, H.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

Okamoto, K.

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides, Chap. 4 (Academic Press, 2000).

Oku, S.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

Okuda, H.

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

Okumura, H.

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

Pasman, J.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Rosmalen, G. V.

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

Sakai, J.

J. Sakai, Guided Optics, Chap. 12 (Kyoritsu Shuppan, 2004) (in Japanese).

Sakane, Y.

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

Sasaki, K.

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.

Sato, I.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Shinoda, M.

Suematsu, Y.

Takeuchi, S.

K. Maruyama and S. Takeuchi, Tech. Rep. ICICE, CPM2002-88 (2002) pp. 7-12 (in Japanese).

Tamir, T.

T. Tamir, Integrated Optics, Chap. 2 (Springer-Verlag., 1975).

Tanabe, T.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Tanaka, Y.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Tokumaru, H.

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.

Tsang, H.

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

Tsunekane, M.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Wildermuth, E. K.

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

Yamanaka, Y.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Yamazaki, H.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Yoshida, K.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Yoshihara, K.

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Yoshikuni, Y.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

Yoshimura, S.

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

Yoshizawa, T.

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Sakane, “Waveguide of amorphous perfluoropolymer for visible light,” Appl. Phys. Lett. 85, 1134-1136 (2004).
[CrossRef]

Bell Syst. Tech. J. (3)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187-3215 (1969).

J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133-2160(1969).

E. A. J. Marcatili, “Bends in Optical Dielectric Guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).

IEEE J. Lightwave Technol. (2)

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “Spotsize converter with improved design for InP-based deep-ridge waveguide structure,” IEEE J. Lightwave Technol. 23, 4207-4214 (2005).
[CrossRef]

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” IEEE J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. J. Minford, S. K. Korotky, and R. C. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at λ=1.3 μm,” IEEE J. Quantum Electron. 18, 1802-1806 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407-1412 (1999).
[CrossRef]

T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6, 38-45 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (4)

Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45, 6742-6749 (2006).
[CrossRef]

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet four-beam light source using waveguides,” Jpn. J. Appl. Phys. 46, 3729-3736 (2007).
[CrossRef]

H. Tokumaru, H. Okumura, K. Arai, N. Kawamura, and S. Yoshimura, “Multi-beam optical system for optical tape recording,” Jpn. J. Appl. Phys. 37, 2241-2244 (1998).

R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yoshizawa, H. Yamazaki, S. Murata, Y. Tanaka, and I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with 8-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411-5416(1993).
[CrossRef]

Proc. SPIE (2)

H. Okumura, K. Arai, N. Kawamura, H. Tokumaru, and H. Okuda, “Multi-beam light source using optical waveguide for optical recording,” Proc. SPIE 4090, 329-334 (2000).
[CrossRef]

R. Katayama, K. Yoshihara, Y. Yamanaka, M. Tsunekane, K. Yoshida, and K. Kubota, “Multi-beam magneto-optical disk drive for parallel read/write operation,” Proc. SPIE 1078, 98-104 (1989).

Rev. Electr. Commun. Lab. (1)

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab. 32, 478-488 (1984).

SMPTE Mot. Imag. J. (1)

H. Tokumaru, M. Kishida, and D. Koide, “HDTV optical disk for broadcasting,” SMPTE Mot. Imag. J. 115, 24-30 (2006).

Other (7)

K. Sasaki, N. Kawamura, H. Tokumaru, and Y. Kuwana, “Blue-violet multi-beam light source using multiple waveguides with a narrow pitch,” in Proceedings of 17th Symposium on Phase Change Optical Information Storage, Yugawara (Society of Phase Change Recording, 2005) pp. 89-94.

K. Okamoto, Fundamentals of Optical Waveguides, Chap. 4 (Academic Press, 2000).

G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. V. Rosmalen, and K. S. Immink, Principles of Optical Disc Systems, (Adam Hilger, 1987) Chap. 2.

T. Tamir, Integrated Optics, Chap. 2 (Springer-Verlag., 1975).

J. Sakai, Guided Optics, Chap. 12 (Kyoritsu Shuppan, 2004) (in Japanese).

Asahi Glass Co., Ltd., CYTOP Tech. Bull. (1990).

K. Maruyama and S. Takeuchi, Tech. Rep. ICICE, CPM2002-88 (2002) pp. 7-12 (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of PCC.

Fig. 2
Fig. 2

Cross-sectional structure of a straight waveguide with a square core of 2 d sides ( λ = 405 nm ). The cutoff curve is plotted by the point matching method [18].

Fig. 3
Fig. 3

Extrinsic factors that enable a straight waveguide to attenuate a beam.

Fig. 4
Fig. 4

Propagation loss of a blue-violet beam propagating through a straight waveguide designed on a cutoff curve.

Fig. 5
Fig. 5

Device length of a PCC when a straight waveguide #0 transmits over 70% of a blue-violet beam.

Fig. 6
Fig. 6

Core pitch q at output of a PCC. A blue-violet beam of < 60 dB optically couples with a straight waveguide #0, while propagating through bent the waveguides #1.

Fig. 7
Fig. 7

Lateral shift δ max between the input and the output of a bent waveguide.

Fig. 8
Fig. 8

Basic configuration of a focusing system.

Fig. 9
Fig. 9

Number of blue-violet beams. A multibeam optical recording head is designed to consist of a PCC using PBVE.

Tables (3)

Tables Icon

Table 1 Discussion of Designing PCC

Tables Icon

Table 2 Specifications of PCC

Tables Icon

Table 3 Formation of PCC

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x ( z ) = A [ B z sin ( B z ) ] ,
A i = p q 2 π i ,
B i = 2 π 2 .
σ ( Δ ) = E Δ 2 a + F 1 Δ + C .
10 · log ( η ) σ ( Δ ) .
χ = κ x 0 2 γ x 0 2 2 β e k 0 2 n 2 e 2 Δ e ( 1 + a γ x 0 ) exp [ γ x 0 ( D 2 a ) ] ,
Q = 2 sin 2 [ 0 2 χ ( z ) d z ] ,
Λ ( R ) [ 1 H 2 ( R ) ] 1.5 3 ε .
Λ ( R ) = 2 k 0 3 n 2 e 3 ( 2 Δ e ) 1.5 β e 2 R ,
H ( R ) = κ x 0 k 0 n 2 e 2 Δ e ( 1 + β e 2 κ x 0 2 a R ) .
R ( z ) = { 2 2 + δ 2 [ 1 cos ( B z ) ] 2 } 1.5 2 π δ 2 | sin ( B z ) | .
δ max ( 1 ) 2 2 π R min .
θ = tan - 1 ( λ 2 π ω 0 ) .

Metrics