Abstract

We present a compact optical polarization-splitting common-path interferometer based on a zero-twist liquid crystal display (LCD). The LCD is encoded with a diffraction grating pattern and illuminated with a polarization state with both horizontal and vertical components. The polarization component perpendicular to the director axis of the liquid crystal molecules is not affected by the LCD and forms the reference beam. However, the polarization component parallel to the director axis is diffracted at an angle determined by the period of the grating. By imposing an analyzer polarizer, these two beams create an interferogram that can either display retardance patterns encoded onto the LCD or analyze external birefringent optical elements. The programmability of the system allows new ways of increasing the utility of the interferograms. Experimental results are provided, including the visualization of optical vortices with different and opposite topological charges.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Measurement Techniques and Applications, P.K.Rastogi, ed. (Artech House, 1997).
  2. J. Gauvin, F. Gagnon, D. Gingras, M. Doucet, A. Bergeron, and H. H. Arsenault, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995).
    [CrossRef] [PubMed]
  3. V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
    [CrossRef]
  4. S. Mallik, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), Chap. 3.
  5. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid-crystal display,” Opt. Lett. 31, 649-651 (2006).
    [CrossRef] [PubMed]
  6. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. , 38, 5004-5013 (1999).
    [CrossRef]
  7. J. E. Bentley, J. A. Davis, J. Albero, and I. Moreno, “Self interferometer technique for visualization of phase patterns onto a liquid crystal display,” Appl. Opt. 45, 7791-7795(2006).
    [CrossRef] [PubMed]
  8. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
    [CrossRef]
  9. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beamsplitters using programmable polarization diffraction gratings,” Opt. Lett. 26, 587-589 (2001).
    [CrossRef]
  10. V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
    [CrossRef]
  11. T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and J. Tashiro, “Method to obtain a clear fringe pattern with a zone-plate interferometer,” Appl. Opt. 34, 2187-2193, (1995)
    [CrossRef] [PubMed]
  12. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex producing lenses,” Appl. Opt. 43, 1360-1367(2004).
    [CrossRef] [PubMed]
  13. M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999).
    [CrossRef]
  14. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankivic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351-1353, (2002).
    [CrossRef]

2007

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

2006

2004

2002

2001

1999

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. , 38, 5004-5013 (1999).
[CrossRef]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999).
[CrossRef]

1995

1993

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Adachi, J.

Albero, J.

Amako, J.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

Arsenault, H. H.

Bandres, M. A.

Bentley, J. B.

Bentley, J. E.

Bergeron, A.

Campos, J.

Chavel, P.

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Cottrell, D. M.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. , 38, 5004-5013 (1999).
[CrossRef]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

Crabtree, K.

Davis, J. A.

Doucet, M.

Fernández-Pousa, C. R.

Gagnon, F.

Gan, X.

Ganic, D.

Gauvin, J.

Gingras, D.

Gu, M.

Gutiérrez-Vega, J. C.

Habraken, S.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Hain, M.

Kamiya, K.

Laude, V.

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Lion, Y.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Mallik, S.

S. Mallik, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), Chap. 3.

Mansuripur, M.

M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999).
[CrossRef]

Maze, S.

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Michel, F.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Miyashiro, H.

Moreau, V.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Moreno, I.

Nomura, T.

Réfrégier, Ph.

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Renotte, Y.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Rosso, V.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Somalingam, S.

Sonehara, T.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

Stankivic, S.

Tashiro, J.

Tilkens, B.

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Tsai, P.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

Tschudi, T.

Wright, E. M.

M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999).
[CrossRef]

Yoshikawa, K.

Yzuel, M. J.

Appl. Opt.

Opt. Commun.

V. Laude, S. Maze, P. Chavel, and Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33-28 (1993).
[CrossRef]

Opt. Eng.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051 (1999).
[CrossRef]

V. Rosso, Y. Renotte, S. Habraken, Y. Lion, F. Michel, V. Moreau, and B. Tilkens, “Almost-common path interferometers using the separation of polarization states for digital phase-shifting shearography,” Opt. Eng. 46, 105601 (2007).
[CrossRef]

Opt. Lett.

Opt. Photonics News

M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photonics News 10 (2), 40-43, (1999).
[CrossRef]

Other

S. Mallik, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), Chap. 3.

Optical Measurement Techniques and Applications, P.K.Rastogi, ed. (Artech House, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical interference pattern as the analyzer is oriented at angles of (a)  45 ° , (b) vertical, and (c)  + 45 ° .

Fig. 2
Fig. 2

In the first row, the fringes period is controlled through the grating period: (a)  p = 128   pixels , (b)  p = 64   pixels , and (c)  p = 32   pixels . In the second row, the fringes contrast is controlled though the maximum blazed phase depth: (d)  Φ max = 0.5 π , (e)  Φ max = π , and (f)  Φ max = 1.5 π .

Fig. 3
Fig. 3

Self-interference pattern. A phase Φ is added to the phase of the blazed grating in a rectangular area at the center of the LCD. (a)  Φ = π / 2 , b)  Φ = π , and (c)  Φ = 3 π / 2 .

Fig. 4
Fig. 4

Interference pattern when a quarter-wave plate (QWP) is placed in between the LCD and the analyzer. The QWP is oriented: (a) vertical, (b) at 45 ° , and (c) horizontal. Here the photos have been rotated by 90 ° to visualize the fringe movement.

Fig. 5
Fig. 5

Interference pattern when a Soleil–Babinet compensator is placed in between the LCD and the analyzer for different values of the phase retardation Δ introduced by the compensator: (a)  Δ = 0 , (b)  Δ = π / 2 , and (c)  Δ = π . All photos have been rotated by 90 ° to show the fringe shift.

Fig. 6
Fig. 6

Stress-induced phase difference. A U-form piece of birefringent plastic is fixed on the lower part in front of the LCD. (a) No applied stress, (b) plastic ends pushed together, and (c) plastic ends pulled apart.

Fig. 7
Fig. 7

Self-interference pattern when helical phase patterns exp ( i m θ ) with different topological orders m are added to the blazed grating: (a)  m = + 2 , (b)  m = + 3 , (c)  m = + 4 , (d)  m = 2 , (e)  m = 3 , and (f)  m = 4 .

Metrics