Abstract

Controlling the index of refraction of polymers plays an important role in their advanced nonlinear optical and electro-optical applications as well as in nanophotonics and biophotonic technologies. A radiation-induced grafting of acrylic acid (AAc) onto poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) copolymer films was carried out to synthesize graft copolymer films using γ–irradiation by the mutual method. The resulted films were characterized by Fourier transform infrared spectroscopy. The grafting process is associated with cross-linking through which a considerable change in the material refractive index is achieved. The linear refractive index, optical dispersion, and the quantum parameters of grafted poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA-g-PAAc) polymeric film are determined in a wide spectral range of 0.23μm. The wavelength for zero material dispersion is evaluated. The oscillator, dispersion, and lattice energies, respectively, are calculated revealing the optical properties of the studied trunk polymeric substrate and the grafted ones. The origin of the optical properties has been discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).
  2. N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
    [CrossRef]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
    [CrossRef]
  4. R. W. Boyed, Nonlinear Optics (Academic Press, 1992), Chapt. 1.
  5. C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).
  6. D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
    [CrossRef]
  7. P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8, 11-19 (2004).
    [CrossRef]
  8. C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
    [CrossRef]
  9. D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), Chapt. 10.
  10. M. C. Gupta, Handbook of Photonics (CRC, 1997), Part A, Section III.
  11. The Handbook of Plastic Optics, U.S. Precision Lens, Ohio 45245, Cincinnati, 1973, chapter 2.
  12. D. F. Horne, Optical Production Technology (Hilger, 1983), p. 253.
  13. S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).
  14. R. L. J. Bellany, The IR-Spectra of Complex Molecules, 2nd ed. (Wiley, 1958).
  15. N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001).
    [CrossRef]
  16. D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy (Dover, 1978).
  17. M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000).
    [CrossRef]
  18. R. W. Ditchburn, Light (Dover, 1991), p. 457.
  19. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980), p. 93.
  20. S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).
  21. S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767-3777 (1973).
  22. S. H. Wemple, “Material dispersion in optical fibers,” Appl. Opt. 18, 31-35 (1979).
  23. H. Poignant, “Dispersive and scattering properties of a ZrF4 based glass,” Electron. Lett. 17, 973-974 (1981).
    [CrossRef]
  24. K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982).
    [CrossRef]
  25. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
    [CrossRef]
  26. L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
    [CrossRef]

2007 (1)

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

2004 (1)

P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8, 11-19 (2004).
[CrossRef]

2003 (1)

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
[CrossRef]

2001 (1)

N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001).
[CrossRef]

2000 (2)

M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000).
[CrossRef]

L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

1999 (1)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

1994 (1)

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

1992 (1)

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

1986 (1)

C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).

1982 (1)

K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982).
[CrossRef]

1981 (1)

H. Poignant, “Dispersive and scattering properties of a ZrF4 based glass,” Electron. Lett. 17, 973-974 (1981).
[CrossRef]

1979 (1)

1976 (1)

D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
[CrossRef]

1973 (1)

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767-3777 (1973).

1971 (1)

S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Abdel-Ghaffar, M. A.

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

Ahmed, A.

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

Al Sagheer, F.

N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001).
[CrossRef]

Al-Assy, N. B.

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

Bellany, R. L. J.

R. L. J. Bellany, The IR-Spectra of Complex Molecules, 2nd ed. (Wiley, 1958).

Bertolucci, M. D.

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy (Dover, 1978).

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980), p. 93.

Boyed, R. W.

R. W. Boyed, Nonlinear Optics (Academic Press, 1992), Chapt. 1.

Chemla, D. S.

D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
[CrossRef]

Chen, C.

C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).

Dessouki, A. M.

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

DiDomenico, M.

S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).

Ditchburn, R. W.

R. W. Ditchburn, Light (Dover, 1991), p. 457.

Eldada, L.

L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

El-Naggar, A. M.

M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000).
[CrossRef]

El-Sawy, N. M.

N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001).
[CrossRef]

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Gupta, M. C.

M. C. Gupta, Handbook of Photonics (CRC, 1997), Part A, Section III.

Harris, D. C.

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy (Dover, 1978).

Hegazy, E. A.

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Horne, D. F.

D. F. Horne, Optical Production Technology (Hilger, 1983), p. 253.

Ivanov, C. D.

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

Jerphagnon, J.

D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
[CrossRef]

Kasarova, S. N

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

Khashan, M. A.

M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000).
[CrossRef]

Liu, G.

C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).

Miligy, G. A.

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

Nassau, K.

K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982).
[CrossRef]

Nikolov, I. D.

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

Oudar, J. L.

D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
[CrossRef]

Park, C.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Petkov, K.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Poignant, H.

H. Poignant, “Dispersive and scattering properties of a ZrF4 based glass,” Electron. Lett. 17, 973-974 (1981).
[CrossRef]

Prasad, P. N.

P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8, 11-19 (2004).
[CrossRef]

Rabie, A. M.

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

Shacklette, L.

L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

Sultanova, N. G.

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

Thomas, E. L.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
[CrossRef]

Van Krevelen, D. W.

D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), Chapt. 10.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Wemple, S. H.

K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982).
[CrossRef]

S. H. Wemple, “Material dispersion in optical fibers,” Appl. Opt. 18, 31-35 (1979).

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767-3777 (1973).

S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980), p. 93.

Yoon, J.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
[CrossRef]

Ann. Rev. Mater. Sci. (1)

C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).

Appl. Opt. (1)

Curr. Opin. Solid State Mater. Sci. (1)

P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8, 11-19 (2004).
[CrossRef]

Electron. Lett. (2)

H. Poignant, “Dispersive and scattering properties of a ZrF4 based glass,” Electron. Lett. 17, 973-974 (1981).
[CrossRef]

K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982).
[CrossRef]

Eur. Polym. J. (1)

N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

J. Non-Cryst. Solids (1)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

J. Polym. Sci., Part A-1 (1)

E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).

Opt. Commun. (2)

M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000).
[CrossRef]

D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976).
[CrossRef]

Opt. Mater. (1)

S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).

Phys. Rev. B (2)

S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767-3777 (1973).

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961).
[CrossRef]

Polym. Int. (1)

N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994).
[CrossRef]

Polymer (1)

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003).
[CrossRef]

Other (9)

D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), Chapt. 10.

M. C. Gupta, Handbook of Photonics (CRC, 1997), Part A, Section III.

The Handbook of Plastic Optics, U.S. Precision Lens, Ohio 45245, Cincinnati, 1973, chapter 2.

D. F. Horne, Optical Production Technology (Hilger, 1983), p. 253.

R. W. Boyed, Nonlinear Optics (Academic Press, 1992), Chapt. 1.

R. L. J. Bellany, The IR-Spectra of Complex Molecules, 2nd ed. (Wiley, 1958).

R. W. Ditchburn, Light (Dover, 1991), p. 457.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980), p. 93.

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy (Dover, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of PFA-g-PAAc polymer.

Fig. 2
Fig. 2

IR-spectra of (a) PFA and (b) PFA-g-PAAc polymeric films.

Fig. 3
Fig. 3

Transmittance and reflectance of the studied polymeric materials.

Fig. 4
Fig. 4

Optical dispersion of PFA and PFA-g-PAAc polymeric films.

Tables (2)

Tables Icon

Table 1 Cauchy Coefficients, Material Energies, Average Interband Oscillator Wavelength and Static Refractive Index of the Studied Polymers

Tables Icon

Table 2 Wavelength for Zero Material Dispersion, Infinity Refractive Index, Average Oscillator Strength, and Abbe Dispersion Parameter

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n 2 = 12 π 2 n 2 c χ ( 3 ) ,
Degree   of   grafting   ( % ) = w g w 0 w 0 × 100 ,
R = ( n 1 ) 2 + k 2 ( n + 1 ) 2 + k 2 ,
δ n = ( n R δR ) 2 + ( n k δk ) 2 ,
δ α α = ( δλ λ ) 2 + ( δk k ) 2 ,
n = 1 + R 1 R + 4 R ( 1 R ) 2 k 2 .
n 2 = 1 + j = i + 1 a ij ( λ λ ij ) 2 1 ( λ λ ij λ ij λ ) 2 + 1 Q ij 2 ,
n 2 = 1 + j = i + 1 a ij 1 ( λ ij / λ ) 2 ,
n = A + B λ 2 + C λ 4 ,
A = 1 + j = i + 1 a ij , B = j = i + 1 a ij λ ij 2 , C = j = i + 1 a ij λ ij 4 .
n 2 1 = E o E d ( E o 2 E 2 ) ,
n 2 1 = E d E o / ( E o 2 E 2 ) E l 2 / E 2 ,
n 2 1 = E d / E o E l 2 / E 2
( n st 2 1 ) / ( n 2 1 ) = 1 ( λ o / λ ) 2 .
n 2 1 = ( S o λ o 2 ) / ( 1 λ o 2 / λ 2 ) ,
S o = ( n 2 1 ) / λ o 2 ,
M ( λ ) = λ c ( d 2 n d λ 2 ) .
M ( λ ) = 1.54 × 10 4 ( E d / E o 3 ) / ( n λ 3 ) 2.17 × 10 3 E l 2 λ / n ps / nm km .
λ c = 1.63 ( E d / E o 3 E l 2 ) 1 / 4 .
n st = E d E o + 1 .
V = ( n D 1 ) / ( n F n C ) ,

Metrics