Abstract

We report the investigation of the reduction of the group velocity propagation resulting from the steep change of the refractive index by the coherent population oscillation in an erbium ion-doped optical fiber. We study fully the influences of the ion density and the temperature on the fractional and time delay. We find that the fractional delay can be decreased at high or low temperature. Moreover, we conclude that the temperature can be used as a control parameter to reduce distortion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef]
  2. H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 31, 061102-1-3 (2006).
  3. P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
    [CrossRef] [PubMed]
  4. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
    [CrossRef] [PubMed]
  5. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  6. Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
    [CrossRef]
  7. Z. M. Shi and R. W. Boyd, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Express 32, 915-917 (2007).
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  11. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
    [CrossRef]
  12. S. Novak and R. Gieske, “Simulink model for EDFA dynamics applied to gain modulation,” J. Lightwave Technol. 20, 986-992 (2002).
    [CrossRef]

2007

Z. M. Shi and R. W. Boyd, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Express 32, 915-917 (2007).

2006

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 31, 061102-1-3 (2006).

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

2005

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

2004

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002

2001

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

2000

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. R.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

Boyd, R. W.

Z. M. Shi and R. W. Boyd, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Express 32, 915-917 (2007).

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Chuang, S. L.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 31, 061102-1-3 (2006).

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Fan, B. H.

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Gieske, R.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Ma, Z. G.

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Novak, S.

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Rao, D. V. G. L. N.

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[CrossRef] [PubMed]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

Shi, Z. M.

Z. M. Shi and R. W. Boyd, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Express 32, 915-917 (2007).

Su, H.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 31, 061102-1-3 (2006).

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Wu, P. F.

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[CrossRef] [PubMed]

Yuan, P.

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

Zhang, Y. D.

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

Appl. Phys. Lett.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 31, 061102-1-3 (2006).

Chin. Phys. Lett.

Y. D. Zhang, B. H. Fan, P. Yuan, and Z. G. Ma, “Reduction of light group velocity by coherent population oscillation in a ruby crystal,” Chin. Phys. Lett. 21, 87-89 (2004).
[CrossRef]

Europhys Lett.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. R. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys Lett. 73, 218-224 (2006).
[CrossRef]

J. Lightwave Technol.

J. Phys. Rev. Lett.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” J. Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef]

Nature

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express

Z. M. Shi and R. W. Boyd, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Express 32, 915-917 (2007).

Phys. Rev. Lett.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Modulation frequency and erbium ion density dependence of the fractional delay observed in propagation through 2 m of erbium-doped optical fiber. The density of the erbium-doped ion is 5.4 × 10 24 , 1.6 × 10 25 , 3.2 × 10 25 , and 6.3 × 10 25 / m 3 , respectively. The lines represent the theoretical simulation results along with the experimental data point. The inset shows the normalized 5 Hz input (solid line) and output (dashed line) signal. The signal is delayed 8.75 ms , corresponding to a group velocity as low as 228.57 m / s .

Fig. 2
Fig. 2

Observed time delay of the light pulse as a function of modulation frequency for 4 different temperatures.

Fig. 3
Fig. 3

Observed fractional delay of the light pulse as a function of modulation frequency for 4 temperatures.

Fig. 4
Fig. 4

Normalized transmission of weak sidebands.

Fig. 5
Fig. 5

Experimentally measured pulse-width ratio versus different temperature under different modulation frequency.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n 1 t = R 13 n 1 W 12 n 1 + W 21 ( ρ n 1 ) + ρ n 1 T 1 .
t N 1 = I p ( 0 , t ) [ exp { b p N 1 } 1 ] + I s ( 0 , t ) [ exp { b s N 1 + c s } 1 ] + N 0 N 1 T 1 ,
b p = Γ p σ 13 A , b s = Γ s ( σ 12 + σ 21 ) A , and c s = Γ s σ 21 ρ L .
N 1 ( t ) = N 1 0 [ 1 + ξ cos ( δ t + ϕ ) ] ,
Δ t = 1 δ × 2 π arctan ( δ δ 2 eff + δ 2 η δ eff ) .
N l m = N l ( e E l m / k T / n = 1 7 , 8 e E l m / k T ) = p l m N l ,
σ e = i = 1 7 j = 1 8 σ j i p 2 i p 1 j , σ a = σ e / exp [ ( ε h υ ) / k T ] ,
σ j i = σ j i p 1 + 4 ( λ / Δ λ j i ) 2 ( 1 λ / λ j i ) 2 , σ j i p = λ j i 4 4 π 2 n 2 c τ j i Δ λ j i ,

Metrics