Abstract

We compare two methods for the optical characterization of turbid media. The estimates of the absorption and reduced scattering coefficients (μa and μs′) by a spatially resolved method and a time-resolved method are performed on tissue-like phantoms. Aqueous suspension of microspheres and Intralipid are used as scattering media with the addition of ink as an absorber. μs′ is first measured on weakly absorbing media. The robustness of these measurements is then tested with respect to a variation of μa. The spatially resolved method gave more accurate estimates for μs′ whereas the time-resolved method gave better results for μa estimates.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. van der Zee, “Methods for measuring the optical properties of tissue samples in the visible and near-infrared wavelength range,” in Medical Optical Tomography: Functional Imaging and Monitoring, G.J.Mueller, B.Chance, R.R.Alfano, S.R.Arridge, J.Beuthan, E.Gratton, M.F.Kaschke, B.R.Masters, S.Svanberg, and P.van der Zee, eds. (SPIE, 1993), pp. 166-192.
  2. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
  3. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, A. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586-3593 (1998).
  4. L. Voisin-Gobin, L. Blanchot, and H. Saint-Jalmes, “Integrating the digitized backscattered image to measure absorption and reduced scattering coefficients in vivo,” Appl. Opt. 38, 4217-4227 (1999).
  5. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612-4620 (2003).
    [CrossRef]
  6. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
    [CrossRef]
  7. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155-1161 (1989).
    [CrossRef]
  8. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179-1181 (1990).
  9. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
    [CrossRef]
  10. W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).
  11. M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
  12. A. Laidevant, A. da Silva, M. Berger, and J.-M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45, 4756-4764 (2006).
    [CrossRef]
  13. X. Smith, R. C. Baker, and K. S. Baker, “Optical properties of the clearest natural waters (200800 nm),” Appl. Opt. 20, 177-184 (1981).
  14. H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 4001100 nm,” Appl. Opt. 30, 4507-4514 (1991).
  15. F. Jaillon, “Caractérisation optique des milieux diffusants: simulation Monte Carlo et mesures en rétrodiffusion polarisée,” Ph.D. dissertation (U. Claude Bernard Lyon 1, 2003).

2006 (1)

2004 (1)

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

2003 (1)

1999 (1)

1998 (2)

1994 (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

1991 (1)

1990 (1)

1989 (2)

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

1981 (1)

Andersson-Engels, S.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Baker, K. S.

Baker, R. C.

Bays, R.

Becker, W.

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

Berg, R.

Berger, M.

Bergmann, A.

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

Biscotti, G.

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

Blanchot, L.

Chance, B.

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Cubeddu, R.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

da Silva, A.

Dam, J. S.

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Dinten, J.-M.

Dögnitz, N.

Eick, A. A.

Freyer, J. P.

Hielscher, A. H.

Jacques, S. L.

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155-1161 (1989).
[CrossRef]

Jaillon, F.

F. Jaillon, “Caractérisation optique des milieux diffusants: simulation Monte Carlo et mesures en rétrodiffusion polarisée,” Ph.D. dissertation (U. Claude Bernard Lyon 1, 2003).

Jarlman, O.

Johnson, T. M.

Kienle, A.

Laidevant, A.

Moes, C.

Mourant, J. R.

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

Patterson, M.

Patterson, M. S.

Pifferi, A.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

Prahl, S.

Rück, A.

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

Saint-Jalmes, H.

Shen, A.

Smith, X.

Svanberg, S.

Swartling, J.

Taroni, P.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

Valentini, G.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

van den Bergh, H.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

P. van der Zee, “Methods for measuring the optical properties of tissue samples in the visible and near-infrared wavelength range,” in Medical Optical Tomography: Functional Imaging and Monitoring, G.J.Mueller, B.Chance, R.R.Alfano, S.R.Arridge, J.Beuthan, E.Gratton, M.F.Kaschke, B.R.Masters, S.Svanberg, and P.van der Zee, eds. (SPIE, 1993), pp. 166-192.

van Gemert, M.

van Marle, J.

van Staveren, H.

Voisin-Gobin, L.

Wagnières, G.

Wilson, B.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Appl. Opt. (8)

X. Smith, R. C. Baker, and K. S. Baker, “Optical properties of the clearest natural waters (200800 nm),” Appl. Opt. 20, 177-184 (1981).

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).

H. van Staveren, C. Moes, J. van Marle, S. Prahl, and M. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 4001100 nm,” Appl. Opt. 30, 4507-4514 (1991).

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, A. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586-3593 (1998).

L. Voisin-Gobin, L. Blanchot, and H. Saint-Jalmes, “Integrating the digitized backscattered image to measure absorption and reduced scattering coefficients in vivo,” Appl. Opt. 38, 4217-4227 (1999).

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612-4620 (2003).
[CrossRef]

A. Laidevant, A. da Silva, M. Berger, and J.-M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45, 4756-4764 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421-2430 (1994).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155-1161 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988).
[CrossRef]

Proc. SPIE (1)

W. Becker, A. Bergmann, G. Biscotti, and A. Rück, “Advanced time-correlated single photon counting technique,” Proc. SPIE , 5340104-112 (2004).

Other (2)

F. Jaillon, “Caractérisation optique des milieux diffusants: simulation Monte Carlo et mesures en rétrodiffusion polarisée,” Ph.D. dissertation (U. Claude Bernard Lyon 1, 2003).

P. van der Zee, “Methods for measuring the optical properties of tissue samples in the visible and near-infrared wavelength range,” in Medical Optical Tomography: Functional Imaging and Monitoring, G.J.Mueller, B.Chance, R.R.Alfano, S.R.Arridge, J.Beuthan, E.Gratton, M.F.Kaschke, B.R.Masters, S.Svanberg, and P.van der Zee, eds. (SPIE, 1993), pp. 166-192.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics