Abstract

The possibility of controlling the diffracted response of a periodic structure is investigated by using dual-period arrays, i.e., periodic arrays with a compound unit cell. We consider wire gratings in which each period comprises several cylinders with circular cross sections and all the cylinder axes are contained in the same plane. It is shown that this kind of structure permits one to control the diffracted response, regardless of the cylinder material and the incident polarization. Our numerical results suggest that the effect produced by wire gratings with dual-period characteristics is basically a geometric effect, and it can be present for other shapes of individual scatterers within each subarray.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
    [CrossRef]
  2. Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
    [CrossRef]
  3. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
    [CrossRef]
  4. J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
    [CrossRef]
  5. G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
    [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  7. W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
    [CrossRef]
  8. A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002).
    [CrossRef]
  9. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
    [CrossRef]
  10. J.-F. Lepage and N. McCarthy, “Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results,” Appl. Opt. 43, 3504-3512 (2004).
    [CrossRef] [PubMed]
  11. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006).
    [CrossRef]
  12. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047-2061 (2006).
    [CrossRef] [PubMed]
  13. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365-2373 (2005).
    [CrossRef]
  14. Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
    [CrossRef]
  15. A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
    [CrossRef]
  16. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
    [CrossRef]
  17. D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
    [CrossRef]
  18. R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
    [CrossRef]
  19. J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
    [CrossRef] [PubMed]
  20. J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.
  21. D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
    [CrossRef] [PubMed]
  22. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
    [CrossRef]
  23. D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
    [CrossRef]
  24. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
    [CrossRef] [PubMed]
  25. D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
    [CrossRef]
  26. V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
    [CrossRef]
  27. D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
    [CrossRef]
  28. J. S. Uppal, P. K. Gupta, and R. G. Harrison, “Aperiodic ruling for the measurement of Gaussian laser beam diameters,” Opt. Lett. 14, 683-685 (1989).
    [CrossRef] [PubMed]
  29. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385-1391 (2007).
    [CrossRef] [PubMed]
  30. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298-1309 (1995).
    [CrossRef]
  31. L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
    [CrossRef]
  32. M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007).
    [CrossRef]

2007 (6)

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385-1391 (2007).
[CrossRef] [PubMed]

2006 (6)

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006).
[CrossRef]

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

2005 (6)

D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

2004 (1)

2003 (3)

Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

2002 (2)

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

2001 (1)

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

2000 (1)

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

1999 (1)

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

1998 (2)

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1995 (1)

1989 (1)

Arend, M.

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Brehm, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Busch, K.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Cai, W. P.

Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Chen, L.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Chen, Y.

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

Choi, J.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Christ, A.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Crouse, D.

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006).
[CrossRef]

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

Deng, J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Deng, X.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Depine, R. A.

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385-1391 (2007).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Fantino, A. N.

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Göring, P.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Gösele, U.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Graener, H.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Graham, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Grosz, S. I.

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Gupta, P. K.

Harrison, R. G.

Hibbins, A.

A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

Kan, C. X.

Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Keshavareddy, P.

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, “Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors,” Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Kuester, E.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Kuhl, J.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Lepage, J.-F.

Lester, M.

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, Z. S.

Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Linden, S.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Liu, F.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Liu, S.

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

López-Ríos, T.

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

Loui, H.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Madrazo, A.

McCarthy, N.

Miclea, P.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Mittra, R.

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Naber, A.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Neuberth, U.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Nielsch, K.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Nieto-Vesperinas, M.

Nikolov, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Pereira, S.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Popovic, Z.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Preist, T. W.

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Quemerais, P.

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

Rau, N.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Sauer, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Scaffardi, L. B.

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Schneider, S.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Sciortino, P.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Seifert, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Skigin, D.

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007).
[CrossRef]

Skigin, D. C.

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385-1391 (2007).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

Tan, W.-C.

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Tocho, J. O.

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Uppal, J. S.

Veremey, V. V.

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Wang, J. J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Wang, Y.

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

Wegener, M.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Wehrspohn, R. B.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Zhang, Y.

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

Zou, J.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Hibbins and J. R. Sambles, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating,” Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Z. S. Li, C. X. Kan, and W. P. Cai, “Tunable optical properties of nanostructured-gold mesoporous-silica assembly,” Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

IEEE Trans. Electron Devices (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, “In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays,” J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

J. Opt. A Pure Appl. Opt. (3)

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal--semiconductor-metal photodetectors,” J. Opt. A Pure Appl. Opt. 8, 175181 (2006).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A Pure Appl. Opt. 9, 81-87 (2007).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

L. B. Scaffardi, M. Lester, D. C. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (2)

Y. Wang, Y. Chen, Y. Zhang, and S. Liu, “Influence of grooves in the electromagnetic transmission of a periodic metallic grating filter,” Opt. Commun. 271, 132-136 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (Jena) (1)

R. A. Depine, A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Phase resonances in obliquely illuminated compound gratings,” Optik (Jena) 118, 42-52 (2007).
[CrossRef]

Phys. Rev. B (2)

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, “Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs,” Phys. Rev. B 71, 245119 (2005).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Phys. Rev. B. (1)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B. 68, 155427 (2003).
[CrossRef]

Phys. Rev. E (4)

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structures gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

J. Le Perchec, P. Quemerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission resonances in metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef] [PubMed]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

Other (1)

J. Le Perchec, A. Barbara, P. Quemerais, and T. López-Ríos, “Role of commensurate arrangements in the optical response of metallic gratings,” ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the scattering problem: a linearly polarized Gaussian beam illuminates a compound grating comprising subarrays of circular cylinders.

Fig. 2
Fig. 2

Angular distribution of reflected and transmitted intensity as a function of the observation angle θ for both incident polarization modes. The structure consists of five subarrays, each of which have five silver cylinders of radius r = 50 nm . θ 0 = 0 ° , W = 5000 nm , λ = 800 nm , ϵ 1 = 27.995 + i 1.523 , d = λ / 0.3 , and d * = 0.1 d . The scale on the right corresponds to the simple array (dashed curve). (a) Reflection, s polarization; (b) reflection, p polarization; (c) transmission, s polarization; (d) transmission, p polarization.

Fig. 3
Fig. 3

Angular distribution of reflected and transmitted intensity as a function of the observation angle θ for both incident polarization modes. The structure consists of five subarrays, each of which have two silver cylinders of radius r = 50 nm . θ 0 = 0 ° , W = 5000 nm , λ = 800 nm , ϵ 1 = 27.995 + i 1.523 , d = λ / 0.3 , and d * = d / 3 . (a) Reflection, s polarization; (b) reflection, p polarization; (c) transmission, s polarization; (d) transmission, p polarization.

Fig. 4
Fig. 4

Contour plots of reflected intensity as a function of the incidence ( θ 0 ) and the observation (θ) angles, for the same parameters of Fig. 2. (a) Simple array, s polarization; (b) simple array, p polarization; (c) compound array, s polarization; (d) compound array, p polarization.

Fig. 5
Fig. 5

Contour plots of reflected intensity as a function of the incidence ( θ 0 ) and the observation (θ) angles, for the same parameters of Fig. 4 but for silica cylinders ( ϵ 1 = 3.5 ). (a) Simple array, s polarization; (b) simple array, p polarization; (c) compound array, s polarization; (d) compound array, p polarization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ α ( 0 ) ( r ) = ϕ α ( inc ) ( r ) + j = 1 N { i 4 C j ( + ) d l [ H 0 ( 1 ) ( ϵ 0 k 0 | r r | ) n ] ϕ α ( 0 ) ( r ) H 0 ( 1 ) ( ϵ 0 k 0 | r r | ) ϕ α ( 0 ) ( r ) n } ,
ϕ α ( j ) ( r ) = i 4 C j ( ) d l [ H 0 ( 1 ) ( ϵ 1 k 0 | r r | ) n ϕ α ( j ) ( r ) H 0 ( 1 ) ( ϵ 1 k 0 | r r | ) ϕ α ( j ) ( r ) n ] ,
[ ϕ α ( 0 ) ( r ) ] r C j ( + ) = [ ϕ α ( j ) ( r ) ] r C j ( ) ,
[ ϕ α ( 0 ) ( r ) n ] r C j ( + ) = [ η j ( α ) ϕ α ( j ) ( r ) n ] r C j ( ) ,
ϕ α ( scatt ) ( r , θ ) = exp [ i ϵ 0 k 0 r π / 4 ] 8 π ( ϵ 0 ) 1 / 2 k 0 r × j = 1 N { C j ( + ) d l ( ( n · k scatt ) ϕ α ( 0 ) ( r ) i ϕ α ( 0 ) ( r ) n ) exp ( i k scatt · r ) } ,
k scatt = ϵ 0 k 0 ( sin θ , 0 , cos θ ) ,
q J λ d * = m λ d , q / J Z
p λ d * = m λ d ,

Metrics