Abstract

The influence of external cavity length on multimode hopping in microchip Nd:YAG lasers is investigated experimentally. With an optical feedback loop, the threshold gain of different longitudinal modes are all modulated by changing the external cavity length; a λ∕2 change in the external cavity length causes a one-period oscillation. The longitudinal modes can be divided into groups according to different initial threshold gain variations and modulation trends corresponding to different external cavity phases. Because of the initial gain difference, only one mode in each group is the dominant potential lasing mode, while others are suppressed. During the 2π change of the external cavity phase, mode hopping occurs among these potential lasing modes from different groups. Both the intensity waveforms and the number of hopping modes strongly depend on the external cavity length. Experimental results agree well with the theoretical analysis of the phenomenon of multimode hopping subjected to optical feedback in microchip Nd:YAG lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980).
    [CrossRef]
  2. J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
    [CrossRef]
  3. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543-1545 (2003).
    [CrossRef] [PubMed]
  4. L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
    [CrossRef]
  5. Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
    [CrossRef]
  6. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
    [CrossRef]
  7. E. Lacot, R. Day, J. Pinel, and F. Stoeckel, “Laser relaxation-oscillation frequency imaging,”Opt. Lett. 26, 1483-1485 (2001).
    [CrossRef]
  8. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111-1114 (1994).
    [PubMed]
  9. R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706-708 (1999).
    [CrossRef]
  10. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862-1864 (1999).
    [CrossRef]
  11. K. Otsuka, K. Abe, J. Ko, and T. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,”Opt. Lett. 27, 1339-1341 (2002).
    [CrossRef]
  12. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
    [CrossRef]
  13. Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 13, 6064-6068 (2007).
    [CrossRef]
  14. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  15. W. Mao and S. Zhang, “Strong optical feedback in birefringent dual frequency laser,” Chin. Phys. 15, 340-346 (2006).
    [CrossRef]
  16. L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
    [CrossRef]
  17. L. Coldren and T. Koch, “External-cavity laser design,”J. Lightwave Technol. 2, 1045-1051 (1984).
    [CrossRef]

2007 (1)

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 13, 6064-6068 (2007).
[CrossRef]

2006 (2)

W. Mao and S. Zhang, “Strong optical feedback in birefringent dual frequency laser,” Chin. Phys. 15, 340-346 (2006).
[CrossRef]

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

2004 (1)

L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

1999 (3)

1994 (2)

K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111-1114 (1994).
[PubMed]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

1984 (2)

L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
[CrossRef]

L. Coldren and T. Koch, “External-cavity laser design,”J. Lightwave Technol. 2, 1045-1051 (1984).
[CrossRef]

1983 (1)

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Abe, K.

Acket, G. A.

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862-1864 (1999).
[CrossRef]

Biesterbos, J. W. M.

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

Blondel, M.

Boef, A. J. D.

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Burrus, C.

L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
[CrossRef]

Chen, X.

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

Chinlon, L.

L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
[CrossRef]

Coldren, L.

L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
[CrossRef]

L. Coldren and T. Koch, “External-cavity laser design,”J. Lightwave Technol. 2, 1045-1051 (1984).
[CrossRef]

Day, R.

Fei, L.

L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
[CrossRef]

Fukazawa, T.

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped microchip LiNdP4O12 laser,” Opt. Lett. 24, 1862-1864 (1999).
[CrossRef]

Ko, J.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Koch, T.

L. Coldren and T. Koch, “External-cavity laser design,”J. Lightwave Technol. 2, 1045-1051 (1984).
[CrossRef]

Lacot, E.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lim, T.

Linders, W.

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

Mao, W.

W. Mao and S. Zhang, “Strong optical feedback in birefringent dual frequency laser,” Chin. Phys. 15, 340-346 (2006).
[CrossRef]

Mégret, P.

Otsuka, K.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Panajotov, K.

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

Pinel, J.

Sciamanna, M.

Stoeckel, F.

Tan, Y.

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 13, 6064-6068 (2007).
[CrossRef]

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

Thienpont, H.

Veretennicoff, I.

Wan, X.

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
[CrossRef]

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Zhang, S.

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 13, 6064-6068 (2007).
[CrossRef]

W. Mao and S. Zhang, “Strong optical feedback in birefringent dual frequency laser,” Chin. Phys. 15, 340-346 (2006).
[CrossRef]

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
[CrossRef]

Appl. Opt. (2)

K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111-1114 (1994).
[PubMed]

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 13, 6064-6068 (2007).
[CrossRef]

Chin. Phys. (2)

Y. Tan, S. Zhang, X. Wan, and X. Chen, “Mode hopping in single-mode microchip Nd:YAG lasers induced by optical feedback,”Chin. Phys. 15, 2934-2941 (2006).
[CrossRef]

W. Mao and S. Zhang, “Strong optical feedback in birefringent dual frequency laser,” Chin. Phys. 15, 340-346 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

L. Fei, S. Zhang, and X. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944-1947 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

J. W. M. Biesterbos, A. J. D. Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled substrate lasers induced by optical feedback,” IEEE J. Quantum Electron. 19, 986-990 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

J. Lightwave Technol. (3)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

L. Chinlon, C. Burrus, and L. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,”J. Lightwave Technol. 2, 544-549 (1984).
[CrossRef]

L. Coldren and T. Koch, “External-cavity laser design,”J. Lightwave Technol. 2, 1045-1051 (1984).
[CrossRef]

Opt. Lett. (5)

Other (1)

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup. M, ME, mirrors; F, interference filter, PZT, piezoelectric transducer; YAG, Nd:YAG crystal; CL, collimating and focusing lenses; LD, laser diode; OS, oscilloscope; D, photodiode.

Fig. 2
Fig. 2

Threshold gain modulation of Fabry–Perot laser with an external cavity.

Fig. 3
Fig. 3

The ν 1 ν 9 modes on the gain curve are symmetric with respect to the central frequency ν 0 .

Fig. 4
Fig. 4

(Color online) Mode hopping (schematically) induced by optical feedback with different external cavity lengths L. (a) L = 0.5 l ; (b), (c) L = 0.75 l ; (d) L = l . The gray vertical arrows (magenta online) represent the threshold gain variation of the dominant lasing mode. The gray horizontal arrows (red online) represent the mode hopping transitions. Curves with different colors represent different phases of the external cavity (i.e., 2 π ν τ ext ) induced by the external cavity length.

Fig. 5
Fig. 5

Fig. 5. Simulation of intensity curves of multimode hopping with different L. (a) L = 288   mm , i.e., L = 5.5 l ; (b) L = 297   mm ; (c) L = 301.5   mm , i.e., L = 5.75 l ; (d) L = 304   mm ; (e) L = 306   mm ; (f) L = 307   mm .

Fig. 5
Fig. 5

Fig. 5. (Continued) (g) L = 308   mm ; (h) L = 309   mm ; (i) L = 314.4   mm , i.e., L = 6 l .

Fig. 6
Fig. 6

Fig. 6. Oscilloscope waveforms of intensity curves of multimode hopping with different L. (a) L = 288   mm ; (b) L = 297   mm ; (c) L = 301.5   mm ; (d) L = 304   mm ; (e) L = 306   mm ; (f) L = 307   mm .

Fig. 6
Fig. 6

Fig. 6. (Continued) (g) L = 308   mm ; (h) L = 309   mm ; (i) L = 314.4   mm .

Fig. 7
Fig. 7

Threshold gain (schematically) of a Fabry–Perot-type laser with a short external cavity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = r 1 r 2   exp ( j 4 π ν n l c + 2 g d ) E 0 ( t ) + r 1 T 2 r 3 ξ   exp ( j 4 π ν n l + L c + 2 g d ) E 0 ( t ) ,
r 1 r 2   exp [ j 4 π ν n l c + 2 g d ] [ 1 + 2 κ   exp ( j 2 π ν τ ext ) ] = 1 ,
Δ g = g c g 0 = ( κ / d ) cos ( 2 π ν τ ext ) ,
I = I 0 ( 1 k Δ g ) ,

Metrics