Abstract

A framework is proposed for optimal joint design of the optical and reconstruction filters in a computational imaging system. First, a technique for the design of a physically unconstrained system is proposed whose performance serves as a universal bound on any realistic computational imaging system. Increasing levels of constraints are then imposed to emulate a physically realizable optical filter. The proposed design employs a generalized Benders’ decomposition method to yield multiple globally optimal solutions to the nonconvex optimization problem. Structured, closed-form solutions for the design of observation and reconstruction filters, in terms of the system input and noise autocorrelation matrices, are presented. Numerical comparison with a state-of-the-art optical system shows the advantage of joint optimization and concurrent design.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (94)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription