Abstract

We describe the concept of a vision system based on an optoelectronic hardware neural processor. The proposed system is composed of a pulse coupled neural network (PCNN) preprocessor stage that converts an input image into a temporal pulsed pattern. These pulses are inputs to the optical broadcast neural network (OBNN) processor, which classifies the input pattern between a set of reference patterns based on a pattern matching strategy. The PCNN is to provide immunity to the scale, rotation, and translation of objects in the image. The OBNN provides high parallelism and a high speed hardware neural processor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
    [CrossRef]
  2. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4, 4-22 (April 1987).
  3. Neuricam, “NC1503-VISoc CMOS intelligent vision system-on-chip,” data sheet; http://www.neuricam.com/.
  4. AnaLogic, “Bi-i V301F. high-speed smart camera,” product features; http://www.analogic-computers.com/.
  5. L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign,”IEEE Trans. Neural Netw. 14, 176-194 (2003).
    [CrossRef]
  6. M. Ruiz-Llata and H. Lamela, “Image identification system based on the optical broadcast neural network processor,” Appl. Opt. 44, 2366-2376 (2005).
    [CrossRef] [PubMed]
  7. H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007).
    [CrossRef]
  8. D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” in International Joint Conference on Neural Networks II (IEEE, 1990), pp. 537-544.
    [CrossRef]
  9. D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
    [CrossRef]
  10. D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
    [CrossRef]
  11. M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
    [CrossRef]
  12. J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
    [CrossRef]
  13. F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996).
    [CrossRef]
  14. G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
    [CrossRef]
  15. K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
    [CrossRef]
  16. M. Ruiz-Llata, “Diseño e implementación de redes neuronales optoelectrónicas: aplicación en sistemas de visión,” Ph.D. dissertation (Universidad Carlos III de Madrid, May 2005).
  17. J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
    [CrossRef]
  18. T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural Networks, 2nd ed. (Springer, 2005).
  19. J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999).
    [CrossRef]
  20. U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004).
    [CrossRef]
  21. Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999).
    [CrossRef]
  22. J. L. Johnson, “Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images,” Appl. Opt. 33, 6239-6523 (1994).
    [CrossRef] [PubMed]
  23. D. L. Wang, “The time dimension for scene analysis,” IEEE Trans. Neural Netw. 16, 1401-1426 (2005).
    [CrossRef] [PubMed]
  24. M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
    [CrossRef]
  25. H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).
  26. M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005).
    [CrossRef]
  27. International Technology Roadmap for Semiconductors; http://public.itrs.net/. (2006).
  28. K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997).
    [CrossRef]
  29. T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998).
    [CrossRef]
  30. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003).
    [CrossRef]
  31. J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998).
    [CrossRef]
  32. M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
    [CrossRef]
  33. L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
    [CrossRef]
  34. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
    [CrossRef] [PubMed]
  35. R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003).
    [CrossRef]
  36. J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

2007 (3)

H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007).
[CrossRef]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

2006 (1)

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

2005 (4)

M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005).
[CrossRef]

D. L. Wang, “The time dimension for scene analysis,” IEEE Trans. Neural Netw. 16, 1401-1426 (2005).
[CrossRef] [PubMed]

M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
[CrossRef]

M. Ruiz-Llata and H. Lamela, “Image identification system based on the optical broadcast neural network processor,” Appl. Opt. 44, 2366-2376 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004).
[CrossRef]

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

2003 (8)

R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003).
[CrossRef]

G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003).
[CrossRef]

M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
[CrossRef]

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
[CrossRef]

D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
[CrossRef]

L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign,”IEEE Trans. Neural Netw. 14, 176-194 (2003).
[CrossRef]

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

1999 (3)

J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
[CrossRef]

J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999).
[CrossRef]

Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999).
[CrossRef]

1998 (2)

T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998).
[CrossRef]

J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998).
[CrossRef]

1997 (1)

K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997).
[CrossRef]

1996 (1)

F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996).
[CrossRef]

1994 (2)

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

J. L. Johnson, “Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images,” Appl. Opt. 33, 6239-6523 (1994).
[CrossRef] [PubMed]

1987 (1)

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4, 4-22 (April 1987).

Ahadian, J. F.

J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998).
[CrossRef]

Anguita, D.

D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
[CrossRef]

Baets, R.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Benson, R.

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
[CrossRef]

Boni, A.

D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
[CrossRef]

Buckman Windover, L. A.

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

Castro, H.

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
[CrossRef]

Cauwenberghts, G.

R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003).
[CrossRef]

Choquette, K. D.

K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997).
[CrossRef]

Di Cioccio, L.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Duncan, A. A.

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
[CrossRef]

Ebeling, K. J.

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

Ekblad, U.

U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004).
[CrossRef]

Esener, S. C.

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

Fedeli, M.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Fonstad, C. G.

J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998).
[CrossRef]

Genov, R.

R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003).
[CrossRef]

Gimeno, J.

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

González, M.

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

Gregory, D. A.

F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996).
[CrossRef]

Hammerstrom, D.

D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” in International Joint Conference on Neural Networks II (IEEE, 1990), pp. 537-544.
[CrossRef]

Haney, M. W.

M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
[CrossRef]

Hendry, D. C.

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
[CrossRef]

Hohmann, S.

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

Holler, M.

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
[CrossRef]

Hou, H. Q.

K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997).
[CrossRef]

Jiménez, M.

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

Johnson, J.

J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
[CrossRef]

Johnson, J. L.

Jonhson, J. L.

J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999).
[CrossRef]

Kinser, J. M.

U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004).
[CrossRef]

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural Networks, 2nd ed. (Springer, 2005).

Krishnamoorthy, A. V.

T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998).
[CrossRef]

Krishnamorthy, A. V.

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

Lagahe, C.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Lamela, H.

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007).
[CrossRef]

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
[CrossRef]

M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005).
[CrossRef]

M. Ruiz-Llata and H. Lamela, “Image identification system based on the optical broadcast neural network processor,” Appl. Opt. 44, 2366-2376 (2005).
[CrossRef] [PubMed]

Lee, J. N.

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

Legat, J.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

Li, G. L.

G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003).
[CrossRef]

Lightowler, N.

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
[CrossRef]

Lindblad, T.

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural Networks, 2nd ed. (Springer, 2005).

Lippmann, R. P.

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4, 4-22 (April 1987).

Malamas, E. N.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

Marsden, G. C.

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

Meier, K.

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

Meindl, J.

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

Miller, D. A. B.

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

Omidvar, O.

J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
[CrossRef]

Ota, Y.

Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999).
[CrossRef]

Padgett, M.

J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
[CrossRef]

Padgett, M. L.

J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999).
[CrossRef]

Petit, L.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

Petrakis, E. G. M.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

Regreny, P.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Reyneri, L. M.

L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign,”IEEE Trans. Neural Netw. 14, 176-194 (2003).
[CrossRef]

Ridella, S.

D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
[CrossRef]

Rojo Romeo, P.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Ruiz-Llata, M.

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007).
[CrossRef]

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005).
[CrossRef]

M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
[CrossRef]

M. Ruiz-Llata and H. Lamela, “Image identification system based on the optical broadcast neural network processor,” Appl. Opt. 44, 2366-2376 (2005).
[CrossRef] [PubMed]

M. Ruiz-Llata, “Diseño e implementación de redes neuronales optoelectrónicas: aplicación en sistemas de visión,” Ph.D. dissertation (Universidad Carlos III de Madrid, May 2005).

Schemmel, J.

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

Schürmann, F.

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

Seassal, C.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Snowdon, J. F.

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

Symington, K. J.

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

Taghizadeh, M. R.

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

Tam, S.

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
[CrossRef]

Thienpont, H.

M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
[CrossRef]

Van Campenhout, J.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Verstuyft, S.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Waddie, A. J.

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

Wang, D. L.

D. L. Wang, “The time dimension for scene analysis,” IEEE Trans. Neural Netw. 16, 1401-1426 (2005).
[CrossRef] [PubMed]

Warde, C.

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
[CrossRef]

Wilamowski, B. M.

Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999).
[CrossRef]

Woodward, T. K.

T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998).
[CrossRef]

Yayla, G.

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

Yoshimura, T.

M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
[CrossRef]

Yu, F. T. S.

F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996).
[CrossRef]

Yu, P. K. L.

G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003).
[CrossRef]

Zervakis, M.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

IEEE Trans. Neural Netw. (1)

D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: theory, algorithm and FPGA implementation,” IEEE Trans. Neural Netw. 14, 993-1009 (2003).
[CrossRef]

Analog Integr. Circuits Signal Process. (1)

J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann, “A mixed-mode analog neural network using current-steering synapses,” Analog Integr. Circuits Signal Process. 38, 233-244 (2004).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

T. K. Woodward and A. V. Krishnamoorthy, “1 Gbit/s CMOS photoreceiver with integrated photodetector operating at 850 nm,” Electron. Lett. 34, 1252-1253 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. W. Haney, H. Thienpont, and T. Yoshimura, “Introduction to the issue on optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 347-349 (2003).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Trans. Acoust. Speech Signal Process. 4, 4-22 (April 1987).

IEEE Trans. Neural Netw. (8)

L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign,”IEEE Trans. Neural Netw. 14, 176-194 (2003).
[CrossRef]

K. J. Symington, A. J. Waddie, M. R. Taghizadeh, and J. F. Snowdon, “A neural-network packet switch controller: scalability, performance and network optimization,” IEEE Trans. Neural Netw. 14, 28-34 (2003).
[CrossRef]

J. Johnson, M. Padgett, and O. Omidvar, “Overview of pulse coupled neural network (PCNN) special issue,” IEEE Trans. Neural Netw. 10, 461-463 (1999).
[CrossRef]

J. L. Jonhson and M. L. Padgett, “PCNN models and applications,”IEEE Trans. Neural Netw. 10, 480-498 (1999).
[CrossRef]

R. Genov and G. Cauwenberghts, “Kerneltron: support vector machine in silicon,”IEEE Trans. Neural Netw. 14, 1426-1434 (2003).
[CrossRef]

D. L. Wang, “The time dimension for scene analysis,” IEEE Trans. Neural Netw. 16, 1401-1426 (2005).
[CrossRef] [PubMed]

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core implementation of a self-organizing neural network,” IEEE Trans. Neural Netw. 14, 1085-1096 (2003).
[CrossRef]

Y. Ota and B. M. Wilamowski, “Analog implementation of pulse-coupled neural networks,”IEEE Trans. Neural Netw. 10, 539-544 (1999).
[CrossRef]

Image Vis. Comput. (1)

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21, 171-188 (2003).
[CrossRef]

Imaging Sci. J. (1)

H. Lamela and M. Ruiz-Llata, “Optoelectronic neural processor for smart vision applications,”Imaging Sci. J. 55(4), 197-205 (2007).
[CrossRef]

J. Lightwave Technol. (2)

L. A. Buckman Windover, K. J. Ebeling, J. N. Lee, J. Meindl, and D. A. B. Miller, “Guest editorial. Special issue on optical interconnects,”J. Lightwave Technol. 22, 2018-2020 (2004).
[CrossRef]

G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010-2030 (2003).
[CrossRef]

Lecture Notes Comput. Sci. (1)

M. Ruiz-Llata and H. Lamela, “Fast optoelectronic neural network for vision applications,”Lecture Notes Comput. Sci. 3512, 502-509 (2005).
[CrossRef]

Opt. Express (1)

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744-6749 (2007).
[CrossRef] [PubMed]

Opt. Eng. (2)

J. F. Ahadian and C. G. Fonstad, Jr., “Epitaxy-on-electronics technology for monolithic optoelectronic integration: foundations, development, and status,” Opt. Eng. 37, 3161-3174 (1998).
[CrossRef]

M. Ruiz-Llata, H. Lamela, and C. Warde, “Design of a compact neural network based on an optical broadcast architecture,” Opt. Eng. 44, 055401 (2005).
[CrossRef]

Proc. IEEE (2)

F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733-752 (1996).
[CrossRef]

G. Yayla, A. V. Krishnamorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749-1762 (1994).
[CrossRef]

Proc. SPIE (1)

H. Lamela, M. Ruiz-Llata, M. Jiménez, M. González, J. Gimeno, and C. Warde, “PCNN pre-processor stage for the optical broadcast neural network processor,” Proc. SPIE 6247, 6247101-10 (2006).

Proc. IEEE (1)

K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. IEEE 85, 1730-1739 (1997).
[CrossRef]

Proc. SPIE (1)

J. Gimeno, H. Lamela, M. González, M. Jiménez, and M. Ruiz-Llata, “Design and implementation of a support vector machine using an optoelectronic matrix-vector multiplier,”Proc. SPIE 6576, 657604-1-6 (2007).

Signal Process. (1)

U. Ekblad and J. M. Kinser, “Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars, and nuclear explosion test,” Signal Process. 84, 1131-1146 (2004).
[CrossRef]

Other (7)

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural Networks, 2nd ed. (Springer, 2005).

M. Ruiz-Llata, “Diseño e implementación de redes neuronales optoelectrónicas: aplicación en sistemas de visión,” Ph.D. dissertation (Universidad Carlos III de Madrid, May 2005).

D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-chip learning,” in International Joint Conference on Neural Networks II (IEEE, 1990), pp. 537-544.
[CrossRef]

M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN),” in International Joint Conference on Neural Networks II (IEEE, 1989), pp. 191-196.
[CrossRef]

Neuricam, “NC1503-VISoc CMOS intelligent vision system-on-chip,” data sheet; http://www.neuricam.com/.

AnaLogic, “Bi-i V301F. high-speed smart camera,” product features; http://www.analogic-computers.com/.

International Technology Roadmap for Semiconductors; http://public.itrs.net/. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(Color online) Basic cell in the OBNN processor.

Fig. 2
Fig. 2

Basic neuron circuit in the optical broadcast architecture.

Fig. 3
Fig. 3

Operation cycle in the OBNN processor.

Fig. 4
Fig. 4

Temporal representation of an input pattern in the vision system.

Fig. 5
Fig. 5

(Color online) Basic scheme of the proposed vision system.

Fig. 6
Fig. 6

Integrate and fire neuron model.

Fig. 7
Fig. 7

(Color online) (a) Simulated and (b) measured neuron behavior.

Fig. 8
Fig. 8

4 × 4 PCNN with nearest neighbor interconnections.

Fig. 9
Fig. 9

Simulations of the 4 × 4 PCNN. Left, 4 × 4 input patterns with pixel white representing zero input current and pixel black representing no zero constant input current to the associated neuron. Beside right each pattern the output obtained by the PCNN as the integration of the 4 × 4 neurons outputs.

Fig. 10
Fig. 10

Neuron model with isolated outputs.

Fig. 11
Fig. 11

Results of the 8 × 8 PCNN.

Fig. 12
Fig. 12

Electronic circuit for high speed neurons.

Fig. 13
Fig. 13

(Color online) Elements in the fast OBNN: (a) system blocks diagram, (b) picture of the optoelectronic components.

Fig. 14
Fig. 14

(a) Processing cycle in the fast design (b) for 128 × 128-sized patterns.

Fig. 15
Fig. 15

Analysis of the errors in the fast design. (a) Interchange input and reference pattern in one neuron (two waveforms overlap). (b) Neurons waveforms with same reference pattern (four waveforms overlap).

Fig. 16
Fig. 16

Effect of input pattern displacement with respect reference pattern for direct pixellated input image processing.

Fig. 17
Fig. 17

Example of pulse distribution for pattern identification using four voltage levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ V C = X W ( 1 C P R Δ t ) [V].

Metrics