A. Bouhamidi and K. Jbilou, “Sylvester Tikhonov-regularization methods,” J. Comput. Appl. Math. 206, 86-98 (2007).

[CrossRef]

G. K. Chantas, N. P. Galatsanos, and N. A. Woods, “Super-resolution based on fast registration and maximum a posteriori reconstruction,” IEEE Trans. Image Process. 16, 1821-1830 (2007).

[CrossRef]

S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process. 15, 141-159 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289-1306 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[CrossRef]

J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory 52, 4036-4048 (2006).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

D. L. Donoho and J. Tanner, “Neighborliness of randomly projected simplices in high dimensions,” in Proc. Natl. Acad. Sci. USA 102, 9452-9457 (2005).

[CrossRef]
[PubMed]

W. Li and H. Leung, “A maximum likelihood approach for image registration using control point and intensity,” IEEE Trans. Image Process. 13, 1115-1127 (2004).

[CrossRef]

P. L. Combettes and J. C. Pesquet, “Image restoration subject to a total variation constraint,” IEEE Trans. Image Process. 13, 1213-1222 (2004).

[CrossRef]

S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003).

[CrossRef]

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165-S187 (2003).

[CrossRef]

S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).

[CrossRef]

P. L. Combettes and J. Luo, “An adaptive level set method for nondifferentiable constrained image recovery,” IEEE Trans. Image Process. 11, 1295-1304 (2002).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM J. Sci. Comput. 22, 503-516 (2000).

[CrossRef]

M. Elad and A. Feuer, “Super-resolution reconstruction of image sequences,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 817-834 (1999).

[CrossRef]

M. Elad and A. Feuer, “super-resolution restoration of an image sequence--adaptive filtering approach,” IEEE Trans. Image Process. 8, 387-395 (1999).

[CrossRef]

T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput. 20, 1964-1977 (1999).

[CrossRef]

R. H. Chan, T. F. Chan, and C. K. Wong, “Cosine transform based preconditioners for total variation deblurring,” IEEE Trans. Image Process. 8, 1472-1478 (1999).

[CrossRef]

T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370-375 (1998).

[CrossRef]

J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2, 1-36 (1998).

[CrossRef]

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14, 24-41 (1997).

[CrossRef]

M. Elad and A. Feuer, “Restoration of single super-resolution image from several blurred, noisy, and down-sampled measured images,” IEEE Trans. Image Process. 6, 1646-1658 (1997).

[CrossRef]

G. H. Golub and U. von Matt, “Generalized cross-validation for large-scale problems,” J. Comput. Graph. Stat. 6, 1-34 (1997).

[CrossRef]

J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms,” IEEE Trans. Image Process. 4, 1417-1429 (1995).

[CrossRef]

J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Process. 42, 2664-2677 (1994).

[CrossRef]

Y. Vardi and D. Lee, “From image deblurring to optimal investments: Maximum likelihood solutions for positive linear inverse problems,” J. R. Stat. Soc. B 55, 569-612 (1993).

S. Kim and W.-Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images,” IEEE Trans. Image Process. 2, 534-539 (1993).

[CrossRef]

D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014-1023 (1993).

[CrossRef]
[PubMed]

T. J. Schulz and D. L. Snyder, “Image recovery from correlations,” J. Opt. Soc. Am. A 9, 1266-1272 (1992).

[CrossRef]

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325-376 (1992).

[CrossRef]

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992).

[CrossRef]

I. Csiszar, “Why least squares and maximum entropy--An axiomatic approach to inference for linear inverse problems,” Ann. Stat. 19, 2032-2066 (1991).

[CrossRef]

M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. USA 88, 3223-3227 (1991).

[CrossRef]
[PubMed]

K. Lange, “Convergence of EM image reconstruction algorithms with Gibbs smoothing,” IEEE Trans. Med. Imaging 9, 439-446 (1990).

[CrossRef]
[PubMed]

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

P. J. Green, “On use of the EM for penalized likelihood estimation,” J. R. Stat. Soc. B 52, 443-452 (1990).

P. J. Green, “Bayesian reconstruction from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9, 84-93 (1990).

[CrossRef]
[PubMed]

J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods for image deblurring,” Proc. IEEE 78, 856-883 (1990).

[CrossRef]

S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990).

[CrossRef]

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

Y. Bresler and S. J. Merhav, “Recursive image registration with application to motion estimation,” IEEE Trans. Acoust. Speech Signal Process. 35, 70-85 (1987).

[CrossRef]

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction in positron emission tomography,” IEEE Trans. Med Imaging 1, 113-122 (1982).

[CrossRef]
[PubMed]

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1-38 (1977).

I. J. Good and R. A. Gaskins, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255-277 (1971).

[CrossRef]

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22, 79-86 (1951).

[CrossRef]

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “Compact TOMBO sensor with scene-independent super-resolution processing,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA3.

[PubMed]

S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).

[CrossRef]

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14, 24-41 (1997).

[CrossRef]

B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-resolution from an image sequence,” in *Computer Vision--ECCV '96* (Springer,1996), pp. 573-581.

J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods for image deblurring,” Proc. IEEE 78, 856-883 (1990).

[CrossRef]

B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-resolution from an image sequence,” in *Computer Vision--ECCV '96* (Springer,1996), pp. 573-581.

P. Blomgren, T. F. Chan, P. Mulet, and C. K. Wong, “Total variation image restoration: numerical methods and extensions,” in *Proceedings of International Conference on Image Processing* (IEEE, 1997), pp. 384-387.

S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990).

[CrossRef]

A. Bouhamidi and K. Jbilou, “Sylvester Tikhonov-regularization methods,” J. Comput. Appl. Math. 206, 86-98 (2007).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, “Compressive optical MONTAGE photography initiative: noise and error analysis,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (Optical Society of America, 2005), paper CMB3.

[PubMed]

N. P. Pitsianis, D. J. Brady, and X. Sun, “The MONTAGE least gradient image reconstruction,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CTuB3.

Y. Bresler and S. J. Merhav, “Recursive image registration with application to motion estimation,” IEEE Trans. Acoust. Speech Signal Process. 35, 70-85 (1987).

[CrossRef]

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325-376 (1992).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[CrossRef]

M. E. Testorf, J. Carter, M. A. Fiddy, and T. J. Suleski, “Multi-aperture diversity imaging: Physical limitations to the generalized sampling theorem (GST),” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA5.

[PubMed]

R. H. Chan, T. F. Chan, and C. K. Wong, “Cosine transform based preconditioners for total variation deblurring,” IEEE Trans. Image Process. 8, 1472-1478 (1999).

[CrossRef]

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165-S187 (2003).

[CrossRef]

T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM J. Sci. Comput. 22, 503-516 (2000).

[CrossRef]

T. Chan and J. Shen, *Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods*, 1st ed. (Society for Industrial and Applied Mathematics, 2005).

E. Jonsson, S. Huang, and T. Chan, “Total variation regularization in positron emission tomography,” UCLA Computational and Applied Mathematics Rep. 98-48 (U. California Los Angeles, 1998).

T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput. 20, 1964-1977 (1999).

[CrossRef]

R. H. Chan, T. F. Chan, and C. K. Wong, “Cosine transform based preconditioners for total variation deblurring,” IEEE Trans. Image Process. 8, 1472-1478 (1999).

[CrossRef]

T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370-375 (1998).

[CrossRef]

P. Blomgren, T. F. Chan, P. Mulet, and C. K. Wong, “Total variation image restoration: numerical methods and extensions,” in *Proceedings of International Conference on Image Processing* (IEEE, 1997), pp. 384-387.

G. K. Chantas, N. P. Galatsanos, and N. A. Woods, “Super-resolution based on fast registration and maximum a posteriori reconstruction,” IEEE Trans. Image Process. 16, 1821-1830 (2007).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

K. Choi and T. J. Schulz, “Superresolution for thin optics,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA4.

[PubMed]

K. Choi, “Minimum I-divergence methods for inverse problems,” Ph.D. thesis (Georgia Institute of Technology, 2005).

P. L. Combettes and J. C. Pesquet, “Image restoration subject to a total variation constraint,” IEEE Trans. Image Process. 13, 1213-1222 (2004).

[CrossRef]

P. L. Combettes and J. Luo, “An adaptive level set method for nondifferentiable constrained image recovery,” IEEE Trans. Image Process. 11, 1295-1304 (2002).

[CrossRef]

I. Csiszar, “Why least squares and maximum entropy--An axiomatic approach to inference for linear inverse problems,” Ann. Stat. 19, 2032-2066 (1991).

[CrossRef]

I. Csiszar and L. Finesso, “On a problem about *I*-projections,” in *Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1997), p. 279.

[CrossRef]

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1-38 (1977).

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289-1306 (2006).

[CrossRef]

D. L. Donoho and J. Tanner, “Neighborliness of randomly projected simplices in high dimensions,” in Proc. Natl. Acad. Sci. USA 102, 9452-9457 (2005).

[CrossRef]
[PubMed]

S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process. 15, 141-159 (2006).

[CrossRef]

M. Elad and A. Feuer, “Super-resolution reconstruction of image sequences,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 817-834 (1999).

[CrossRef]

M. Elad and A. Feuer, “super-resolution restoration of an image sequence--adaptive filtering approach,” IEEE Trans. Image Process. 8, 387-395 (1999).

[CrossRef]

M. Elad and A. Feuer, “Restoration of single super-resolution image from several blurred, noisy, and down-sampled measured images,” IEEE Trans. Image Process. 6, 1646-1658 (1997).

[CrossRef]

M. Elad, “Super-resolution reconstruction of image sequences--adaptive filtering approach,” Ph.D. thesis (The Technion Israel Institute of Technology, 1996).

S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process. 15, 141-159 (2006).

[CrossRef]

J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms,” IEEE Trans. Image Process. 4, 1417-1429 (1995).

[CrossRef]

J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Process. 42, 2664-2677 (1994).

[CrossRef]

M. Elad and A. Feuer, “super-resolution restoration of an image sequence--adaptive filtering approach,” IEEE Trans. Image Process. 8, 387-395 (1999).

[CrossRef]

M. Elad and A. Feuer, “Super-resolution reconstruction of image sequences,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 817-834 (1999).

[CrossRef]

M. Elad and A. Feuer, “Restoration of single super-resolution image from several blurred, noisy, and down-sampled measured images,” IEEE Trans. Image Process. 6, 1646-1658 (1997).

[CrossRef]

D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, “Compressive optical MONTAGE photography initiative: noise and error analysis,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (Optical Society of America, 2005), paper CMB3.

[PubMed]

M. E. Testorf, J. Carter, M. A. Fiddy, and T. J. Suleski, “Multi-aperture diversity imaging: Physical limitations to the generalized sampling theorem (GST),” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA5.

[PubMed]

I. Csiszar and L. Finesso, “On a problem about *I*-projections,” in *Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1997), p. 279.

[CrossRef]

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “Compact TOMBO sensor with scene-independent super-resolution processing,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA3.

[PubMed]

G. K. Chantas, N. P. Galatsanos, and N. A. Woods, “Super-resolution based on fast registration and maximum a posteriori reconstruction,” IEEE Trans. Image Process. 16, 1821-1830 (2007).

[CrossRef]

I. J. Good and R. A. Gaskins, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255-277 (1971).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput. 20, 1964-1977 (1999).

[CrossRef]

G. H. Golub and U. von Matt, “Generalized cross-validation for large-scale problems,” J. Comput. Graph. Stat. 6, 1-34 (1997).

[CrossRef]

I. J. Good and R. A. Gaskins, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255-277 (1971).

[CrossRef]

J. W. Goodman, *Introduction to Fourier Optics*, 3rd ed.(Roberts & Company, 2005).

P. J. Green, “On use of the EM for penalized likelihood estimation,” J. R. Stat. Soc. B 52, 443-452 (1990).

P. J. Green, “Bayesian reconstruction from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9, 84-93 (1990).

[CrossRef]
[PubMed]

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” in *Proceedings of IEEE International Symposium on Nuclear Science* (IEEE, 1988), pp. 1562-1566.

J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory 52, 4036-4048 (2006).

[CrossRef]

J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms,” IEEE Trans. Image Process. 4, 1417-1429 (1995).

[CrossRef]

J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Process. 42, 2664-2677 (1994).

[CrossRef]

E. Jonsson, S. Huang, and T. Chan, “Total variation regularization in positron emission tomography,” UCLA Computational and Applied Mathematics Rep. 98-48 (U. California Los Angeles, 1998).

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

A. Bouhamidi and K. Jbilou, “Sylvester Tikhonov-regularization methods,” J. Comput. Appl. Math. 206, 86-98 (2007).

[CrossRef]

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

E. Jonsson, S. Huang, and T. Chan, “Total variation regularization in positron emission tomography,” UCLA Computational and Applied Mathematics Rep. 98-48 (U. California Los Angeles, 1998).

S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).

[CrossRef]

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “Compact TOMBO sensor with scene-independent super-resolution processing,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA3.

[PubMed]

S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003).

[CrossRef]

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14, 24-41 (1997).

[CrossRef]

S. Kim and W.-Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images,” IEEE Trans. Image Process. 2, 534-539 (1993).

[CrossRef]

S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22, 79-86 (1951).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods for image deblurring,” Proc. IEEE 78, 856-883 (1990).

[CrossRef]

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1-38 (1977).

K. Lange, “Convergence of EM image reconstruction algorithms with Gibbs smoothing,” IEEE Trans. Med. Imaging 9, 439-446 (1990).

[CrossRef]
[PubMed]

Y. Vardi and D. Lee, “From image deblurring to optimal investments: Maximum likelihood solutions for positive linear inverse problems,” J. R. Stat. Soc. B 55, 569-612 (1993).

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22, 79-86 (1951).

[CrossRef]

W. Li and H. Leung, “A maximum likelihood approach for image registration using control point and intensity,” IEEE Trans. Image Process. 13, 1115-1127 (2004).

[CrossRef]

W. Li and H. Leung, “A maximum likelihood approach for image registration using control point and intensity,” IEEE Trans. Image Process. 13, 1115-1127 (2004).

[CrossRef]

P. L. Combettes and J. Luo, “An adaptive level set method for nondifferentiable constrained image recovery,” IEEE Trans. Image Process. 11, 1295-1304 (2002).

[CrossRef]

J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2, 1-36 (1998).

[CrossRef]

B. A. Mair and J. Zahnen, “A generalization of Green's one-step-late algorithm for penalized ML reconstruction of PET images,” in *Proceedings of International Symposium on Nuclear Science* (IEEE, 2006), pp. 2775-2777.

S. Mallat, *A Wavelet Tour of Signal Processing*, 2nd ed. (Academic, 1999).

T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM J. Sci. Comput. 22, 503-516 (2000).

[CrossRef]

Y. Bresler and S. J. Merhav, “Recursive image registration with application to motion estimation,” IEEE Trans. Acoust. Speech Signal Process. 35, 70-85 (1987).

[CrossRef]

J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods for image deblurring,” Proc. IEEE 78, 856-883 (1990).

[CrossRef]

S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process. 15, 141-159 (2006).

[CrossRef]

M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. USA 88, 3223-3227 (1991).

[CrossRef]
[PubMed]

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM J. Sci. Comput. 22, 503-516 (2000).

[CrossRef]

T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput. 20, 1964-1977 (1999).

[CrossRef]

P. Blomgren, T. F. Chan, P. Mulet, and C. K. Wong, “Total variation image restoration: numerical methods and extensions,” in *Proceedings of International Conference on Image Processing* (IEEE, 1997), pp. 384-387.

J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory 52, 4036-4048 (2006).

[CrossRef]

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992).

[CrossRef]

J. A. O'Sullivan and D. L. Snyder, “Deterministic EM algorithms with penalties,” in ,*Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1995), p. 177.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” in *Proceedings of IEEE International Symposium on Nuclear Science* (IEEE, 1988), pp. 1562-1566.

S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003).

[CrossRef]

S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003).

[CrossRef]

P. L. Combettes and J. C. Pesquet, “Image restoration subject to a total variation constraint,” IEEE Trans. Image Process. 13, 1213-1222 (2004).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

N. P. Pitsianis, D. J. Brady, and X. Sun, “The MONTAGE least gradient image reconstruction,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CTuB3.

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. USA 88, 3223-3227 (1991).

[CrossRef]
[PubMed]

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1-38 (1977).

T. J. Schulz and D. L. Snyder, “Image recovery from correlations,” J. Opt. Soc. Am. A 9, 1266-1272 (1992).

[CrossRef]

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992).

[CrossRef]

K. Choi and T. J. Schulz, “Superresolution for thin optics,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA4.

[PubMed]

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “Compact TOMBO sensor with scene-independent super-resolution processing,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA3.

[PubMed]

D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, “Compressive optical MONTAGE photography initiative: noise and error analysis,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (Optical Society of America, 2005), paper CMB3.

[PubMed]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

T. Chan and J. Shen, *Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods*, 1st ed. (Society for Industrial and Applied Mathematics, 2005).

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction in positron emission tomography,” IEEE Trans. Med Imaging 1, 113-122 (1982).

[CrossRef]
[PubMed]

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014-1023 (1993).

[CrossRef]
[PubMed]

T. J. Schulz and D. L. Snyder, “Image recovery from correlations,” J. Opt. Soc. Am. A 9, 1266-1272 (1992).

[CrossRef]

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992).

[CrossRef]

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

J. A. O'Sullivan and D. L. Snyder, “Deterministic EM algorithms with penalties,” in ,*Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1995), p. 177.

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165-S187 (2003).

[CrossRef]

S. Kim and W.-Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images,” IEEE Trans. Image Process. 2, 534-539 (1993).

[CrossRef]

D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, “Compressive optical MONTAGE photography initiative: noise and error analysis,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (Optical Society of America, 2005), paper CMB3.

[PubMed]

M. E. Testorf, J. Carter, M. A. Fiddy, and T. J. Suleski, “Multi-aperture diversity imaging: Physical limitations to the generalized sampling theorem (GST),” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA5.

[PubMed]

N. P. Pitsianis, D. J. Brady, and X. Sun, “The MONTAGE least gradient image reconstruction,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CTuB3.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

D. L. Donoho and J. Tanner, “Neighborliness of randomly projected simplices in high dimensions,” in Proc. Natl. Acad. Sci. USA 102, 9452-9457 (2005).

[CrossRef]
[PubMed]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

M. E. Testorf, J. Carter, M. A. Fiddy, and T. J. Suleski, “Multi-aperture diversity imaging: Physical limitations to the generalized sampling theorem (GST),” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA5.

[PubMed]

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990).

[CrossRef]

Y. Vardi and D. Lee, “From image deblurring to optimal investments: Maximum likelihood solutions for positive linear inverse problems,” J. R. Stat. Soc. B 55, 569-612 (1993).

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction in positron emission tomography,” IEEE Trans. Med Imaging 1, 113-122 (1982).

[CrossRef]
[PubMed]

J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2, 1-36 (1998).

[CrossRef]

G. H. Golub and U. von Matt, “Generalized cross-validation for large-scale problems,” J. Comput. Graph. Stat. 6, 1-34 (1997).

[CrossRef]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

R. H. Chan, T. F. Chan, and C. K. Wong, “Cosine transform based preconditioners for total variation deblurring,” IEEE Trans. Image Process. 8, 1472-1478 (1999).

[CrossRef]

T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370-375 (1998).

[CrossRef]

P. Blomgren, T. F. Chan, P. Mulet, and C. K. Wong, “Total variation image restoration: numerical methods and extensions,” in *Proceedings of International Conference on Image Processing* (IEEE, 1997), pp. 384-387.

G. K. Chantas, N. P. Galatsanos, and N. A. Woods, “Super-resolution based on fast registration and maximum a posteriori reconstruction,” IEEE Trans. Image Process. 16, 1821-1830 (2007).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

B. A. Mair and J. Zahnen, “A generalization of Green's one-step-late algorithm for penalized ML reconstruction of PET images,” in *Proceedings of International Symposium on Nuclear Science* (IEEE, 2006), pp. 2775-2777.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” in *Proceedings of IEEE International Symposium on Nuclear Science* (IEEE, 1988), pp. 1562-1566.

B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-resolution from an image sequence,” in *Computer Vision--ECCV '96* (Springer,1996), pp. 573-581.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325-376 (1992).

[CrossRef]

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22, 79-86 (1951).

[CrossRef]

I. Csiszar, “Why least squares and maximum entropy--An axiomatic approach to inference for linear inverse problems,” Ann. Stat. 19, 2032-2066 (1991).

[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).

[CrossRef]

I. J. Good and R. A. Gaskins, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255-277 (1971).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207-1223 (2006).

[CrossRef]

S. Park, M. Park, and M. G. Kang, “Super-resolution image reconstruction, a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003).

[CrossRef]

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14, 24-41 (1997).

[CrossRef]

Y. Bresler and S. J. Merhav, “Recursive image registration with application to motion estimation,” IEEE Trans. Acoust. Speech Signal Process. 35, 70-85 (1987).

[CrossRef]

S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. Acoust. Speech Signal Process. 38, 1013-1027 (1990).

[CrossRef]

S. Kim and W.-Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images,” IEEE Trans. Image Process. 2, 534-539 (1993).

[CrossRef]

G. K. Chantas, N. P. Galatsanos, and N. A. Woods, “Super-resolution based on fast registration and maximum a posteriori reconstruction,” IEEE Trans. Image Process. 16, 1821-1830 (2007).

[CrossRef]

S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Process. 15, 141-159 (2006).

[CrossRef]

M. Elad and A. Feuer, “Restoration of single super-resolution image from several blurred, noisy, and down-sampled measured images,” IEEE Trans. Image Process. 6, 1646-1658 (1997).

[CrossRef]

J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms,” IEEE Trans. Image Process. 4, 1417-1429 (1995).

[CrossRef]

W. Li and H. Leung, “A maximum likelihood approach for image registration using control point and intensity,” IEEE Trans. Image Process. 13, 1115-1127 (2004).

[CrossRef]

M. Elad and A. Feuer, “super-resolution restoration of an image sequence--adaptive filtering approach,” IEEE Trans. Image Process. 8, 387-395 (1999).

[CrossRef]

T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370-375 (1998).

[CrossRef]

R. H. Chan, T. F. Chan, and C. K. Wong, “Cosine transform based preconditioners for total variation deblurring,” IEEE Trans. Image Process. 8, 1472-1478 (1999).

[CrossRef]

P. L. Combettes and J. Luo, “An adaptive level set method for nondifferentiable constrained image recovery,” IEEE Trans. Image Process. 11, 1295-1304 (2002).

[CrossRef]

P. L. Combettes and J. C. Pesquet, “Image restoration subject to a total variation constraint,” IEEE Trans. Image Process. 13, 1213-1222 (2004).

[CrossRef]

J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory 52, 4036-4048 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489-509 (2006).

[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289-1306 (2006).

[CrossRef]

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction in positron emission tomography,” IEEE Trans. Med Imaging 1, 113-122 (1982).

[CrossRef]
[PubMed]

P. J. Green, “Bayesian reconstruction from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9, 84-93 (1990).

[CrossRef]
[PubMed]

D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228-238 (1987).

[CrossRef]

K. Lange, “Convergence of EM image reconstruction algorithms with Gibbs smoothing,” IEEE Trans. Med. Imaging 9, 439-446 (1990).

[CrossRef]
[PubMed]

M. Elad and A. Feuer, “Super-resolution reconstruction of image sequences,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 817-834 (1999).

[CrossRef]

S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).

[CrossRef]

J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Process. 42, 2664-2677 (1994).

[CrossRef]

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to nonnegativity constraints,” IEEE Trans. Signal Process. 40, 1143-1150 (1992).

[CrossRef]

D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Probl. 19, S165-S187 (2003).

[CrossRef]

A. Bouhamidi and K. Jbilou, “Sylvester Tikhonov-regularization methods,” J. Comput. Appl. Math. 206, 86-98 (2007).

[CrossRef]

G. H. Golub and U. von Matt, “Generalized cross-validation for large-scale problems,” J. Comput. Graph. Stat. 6, 1-34 (1997).

[CrossRef]

Y. Vardi and D. Lee, “From image deblurring to optimal investments: Maximum likelihood solutions for positive linear inverse problems,” J. R. Stat. Soc. B 55, 569-612 (1993).

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography,” J. R. Stat. Soc. B 52, 271-324 (1990).

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1-38 (1977).

P. J. Green, “On use of the EM for penalized likelihood estimation,” J. R. Stat. Soc. B 52, 443-452 (1990).

J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. Image Anal. 2, 1-36 (1998).

[CrossRef]

J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods for image deblurring,” Proc. IEEE 78, 856-883 (1990).

[CrossRef]

D. L. Donoho and J. Tanner, “Neighborliness of randomly projected simplices in high dimensions,” in Proc. Natl. Acad. Sci. USA 102, 9452-9457 (2005).

[CrossRef]
[PubMed]

M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. USA 88, 3223-3227 (1991).

[CrossRef]
[PubMed]

M. Shankar, R. Willett, N. P. Pitsianis, R. Te Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE. 6294, 629411 (2006).

[CrossRef]

T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput. 20, 1964-1977 (1999).

[CrossRef]

T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM J. Sci. Comput. 22, 503-516 (2000).

[CrossRef]

T. Chan and J. Shen, *Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods*, 1st ed. (Society for Industrial and Applied Mathematics, 2005).

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” in *Proceedings of IEEE International Symposium on Nuclear Science* (IEEE, 1988), pp. 1562-1566.

J. A. O'Sullivan and D. L. Snyder, “Deterministic EM algorithms with penalties,” in ,*Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1995), p. 177.

I. Csiszar and L. Finesso, “On a problem about *I*-projections,” in *Proceedings of IEEE International Symposium on Information Theory* (IEEE, 1997), p. 279.

[CrossRef]

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “Compact TOMBO sensor with scene-independent super-resolution processing,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA3.

[PubMed]

K. Choi and T. J. Schulz, “Superresolution for thin optics,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA4.

[PubMed]

M. E. Testorf, J. Carter, M. A. Fiddy, and T. J. Suleski, “Multi-aperture diversity imaging: Physical limitations to the generalized sampling theorem (GST),” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA5.

[PubMed]

D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, “Compressive optical MONTAGE photography initiative: noise and error analysis,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (Optical Society of America, 2005), paper CMB3.

[PubMed]

N. P. Pitsianis, D. J. Brady, and X. Sun, “The MONTAGE least gradient image reconstruction,” in *Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings*, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CTuB3.

P. Blomgren, T. F. Chan, P. Mulet, and C. K. Wong, “Total variation image restoration: numerical methods and extensions,” in *Proceedings of International Conference on Image Processing* (IEEE, 1997), pp. 384-387.

B. A. Mair and J. Zahnen, “A generalization of Green's one-step-late algorithm for penalized ML reconstruction of PET images,” in *Proceedings of International Symposium on Nuclear Science* (IEEE, 2006), pp. 2775-2777.

J. W. Goodman, *Introduction to Fourier Optics*, 3rd ed.(Roberts & Company, 2005).

B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-resolution from an image sequence,” in *Computer Vision--ECCV '96* (Springer,1996), pp. 573-581.

M. Elad, “Super-resolution reconstruction of image sequences--adaptive filtering approach,” Ph.D. thesis (The Technion Israel Institute of Technology, 1996).

K. Choi, “Minimum I-divergence methods for inverse problems,” Ph.D. thesis (Georgia Institute of Technology, 2005).

S. Mallat, *A Wavelet Tour of Signal Processing*, 2nd ed. (Academic, 1999).

E. Jonsson, S. Huang, and T. Chan, “Total variation regularization in positron emission tomography,” UCLA Computational and Applied Mathematics Rep. 98-48 (U. California Los Angeles, 1998).