Abstract

We report a method of producing a lateral gradient in the optical properties of anodically etched porous silicon layers. Lateral gradation details of the porous silicon layer are governed by the etch mask pattern involved. Unlike other methods that rely on uneven hole current distribution, we believe that in our method the diffusion of reactive ions in the etchant plays a key role. As an implementation of the proposed method, we demonstrate a linearly graded optical bandpass filter operating at the λ=1550nm range by employing a tapered etch window opening. The resultant optical filter exhibited a 60nm tuning range with a sharp transmission bandwidth of 3nm. Computer simulations indicate that an uneven hole current distribution cannot be the reason for the observed gradient along the taper axis, supporting the view that the diffusion-limited etch process plays the key role.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046-1048 (1990).
    [CrossRef]
  2. C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. . 67, 2983-2985 (1995).
    [CrossRef]
  3. L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Pérot filters,” Semicond. Sci. Technol. 12, 570-575(1997).
    [CrossRef]
  4. P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535-3537 (2000).
    [CrossRef]
  5. D. A. G. Bruggemann, “The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances,” Ann. Phys. 24, 636-664 (1935).
  6. D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
    [CrossRef]
  7. D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
    [CrossRef]
  8. S. E. Foss and T. G. Finstad, in Engineered Pososity for Microphotonics and Plasmonics, R. Wehrspohn, F. Garcial-Vidal, M. Notomi, and A. Scherer, eds., MRS Proceedings 707 (Materials Research Society, 2004), paper W.1.6.
  9. H. H. G. Bohn and M. Marso, “Wedge-shaped layers from porous silicon: the basics of laterally graded interference filters,” Phys. Status Solidi A 202, 1437-1442 (2005).
    [CrossRef]
  10. J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
    [CrossRef]
  11. S. Llyas and M. Gal, “Gradient refractive index planar microlens in Si using porous silicon,” Appl. Phys. Lett. 89, 211123 (2006).
    [CrossRef]
  12. M. Ghulinyan, Z. Gaburro, and L. Pavesi, in “Optical superlattices: where photons behave like electrons,” New Topics in Lasers and Electro-Optics, W. T. Arkin, ed. (Nova Science, 2006), Chap. 2, pp. 63-82.
  13. H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
    [CrossRef]
  14. Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
    [CrossRef]
  15. A. Halimaoui, “Pourous silicon formation by anodisation,” in Properties of Porous Silicon, L.T.Canham, ed. (Institution of Engineering and Technology, 1997), Sec. 1.2, pp.12-22.
  16. Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

2006 (2)

J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
[CrossRef]

S. Llyas and M. Gal, “Gradient refractive index planar microlens in Si using porous silicon,” Appl. Phys. Lett. 89, 211123 (2006).
[CrossRef]

2005 (1)

H. H. G. Bohn and M. Marso, “Wedge-shaped layers from porous silicon: the basics of laterally graded interference filters,” Phys. Status Solidi A 202, 1437-1442 (2005).
[CrossRef]

2002 (1)

Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

2001 (1)

H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
[CrossRef]

2000 (3)

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535-3537 (2000).
[CrossRef]

1998 (1)

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

1997 (1)

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Pérot filters,” Semicond. Sci. Technol. 12, 570-575(1997).
[CrossRef]

1995 (1)

C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. . 67, 2983-2985 (1995).
[CrossRef]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

1935 (1)

D. A. G. Bruggemann, “The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances,” Ann. Phys. 24, 636-664 (1935).

Arens-Fischer, R.

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

Ares-Fisher, R.

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Bohn, H. H. G.

H. H. G. Bohn and M. Marso, “Wedge-shaped layers from porous silicon: the basics of laterally graded interference filters,” Phys. Status Solidi A 202, 1437-1442 (2005).
[CrossRef]

Bruggemann, D. A. G.

D. A. G. Bruggemann, “The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances,” Ann. Phys. 24, 636-664 (1935).

Butz, R.

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

Choe, J.-S.

Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Dubos, P.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Pérot filters,” Semicond. Sci. Technol. 12, 570-575(1997).
[CrossRef]

Ferrand, P.

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535-3537 (2000).
[CrossRef]

Finstad, T. G.

S. E. Foss and T. G. Finstad, in Engineered Pososity for Microphotonics and Plasmonics, R. Wehrspohn, F. Garcial-Vidal, M. Notomi, and A. Scherer, eds., MRS Proceedings 707 (Materials Research Society, 2004), paper W.1.6.

Foss, S. E.

S. E. Foss and T. G. Finstad, in Engineered Pososity for Microphotonics and Plasmonics, R. Wehrspohn, F. Garcial-Vidal, M. Notomi, and A. Scherer, eds., MRS Proceedings 707 (Materials Research Society, 2004), paper W.1.6.

Gaburro, Z.

M. Ghulinyan, Z. Gaburro, and L. Pavesi, in “Optical superlattices: where photons behave like electrons,” New Topics in Lasers and Electro-Optics, W. T. Arkin, ed. (Nova Science, 2006), Chap. 2, pp. 63-82.

Gal, M.

S. Llyas and M. Gal, “Gradient refractive index planar microlens in Si using porous silicon,” Appl. Phys. Lett. 89, 211123 (2006).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, Z. Gaburro, and L. Pavesi, in “Optical superlattices: where photons behave like electrons,” New Topics in Lasers and Electro-Optics, W. T. Arkin, ed. (Nova Science, 2006), Chap. 2, pp. 63-82.

Halimaoui, A.

A. Halimaoui, “Pourous silicon formation by anodisation,” in Properties of Porous Silicon, L.T.Canham, ed. (Institution of Engineering and Technology, 1997), Sec. 1.2, pp.12-22.

Hunkel, D.

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Jeon, H.

Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
[CrossRef]

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Kim, H.-J.

H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
[CrossRef]

Kim, J.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Kim, J. H.

H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
[CrossRef]

Kim, Y.-S.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Lee, P.-W.

J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
[CrossRef]

Lin, J.-C.

J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
[CrossRef]

Llyas, S.

S. Llyas and M. Gal, “Gradient refractive index planar microlens in Si using porous silicon,” Appl. Phys. Lett. 89, 211123 (2006).
[CrossRef]

Lüth, H.

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Marso, M.

H. H. G. Bohn and M. Marso, “Wedge-shaped layers from porous silicon: the basics of laterally graded interference filters,” Phys. Status Solidi A 202, 1437-1442 (2005).
[CrossRef]

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Mazzoleni, C.

C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. . 67, 2983-2985 (1995).
[CrossRef]

Park, Y.

Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

Pavesi, L.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Pérot filters,” Semicond. Sci. Technol. 12, 570-575(1997).
[CrossRef]

C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. . 67, 2983-2985 (1995).
[CrossRef]

M. Ghulinyan, Z. Gaburro, and L. Pavesi, in “Optical superlattices: where photons behave like electrons,” New Topics in Lasers and Electro-Optics, W. T. Arkin, ed. (Nova Science, 2006), Chap. 2, pp. 63-82.

Roh, Y.-G.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Romestain, R.

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535-3537 (2000).
[CrossRef]

Tsai, W.-C.

J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
[CrossRef]

Woo, J. C.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

Ann. Phys. (1)

D. A. G. Bruggemann, “The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances,” Ann. Phys. 24, 636-664 (1935).

Appl. Phys. Lett. (5)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. . 67, 2983-2985 (1995).
[CrossRef]

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535-3537 (2000).
[CrossRef]

J.-C. Lin, P.-W. Lee, and W.-C. Tsai, “Manufacturing method for n-type porous silicon based on Hall effect without illumination,” Appl. Phys. Lett. 89, 121119 (2006).
[CrossRef]

S. Llyas and M. Gal, “Gradient refractive index planar microlens in Si using porous silicon,” Appl. Phys. Lett. 89, 211123 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12, 507-509 (2000).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. Park, J.-S. Choe, and H. Jeon, “Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film,” J. Korean Phys. Soc. 40, 245-249 (2002).

J. Lumin. (1)

D. Hunkel, R. Butz, R. Ares-Fisher, M. Marso, and H. Lüth, “Interference filters from porous silicon with laterally varying wavelength of reflection,” J. Lumin. 80, 133-136 (1998).
[CrossRef]

Mater. Sci. Eng. (1)

D. Hunkel, M. Marso, R. Butz, R. Arens-Fischer, and H. Lüth, “Integrated photometer with porous silicon interference filters,” Mater. Sci. Eng. B 69, 100-103 (2000).
[CrossRef]

Phys. Status Solidi A (1)

H. H. G. Bohn and M. Marso, “Wedge-shaped layers from porous silicon: the basics of laterally graded interference filters,” Phys. Status Solidi A 202, 1437-1442 (2005).
[CrossRef]

Semicond. Sci. Technol. (2)

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry-Pérot filters,” Semicond. Sci. Technol. 12, 570-575(1997).
[CrossRef]

H.-J. Kim, J. H. Kim, and H. Jeon, “Optical microscope imaging of semiconductor quantum wells,” Semicond. Sci. Technol. 16, L24-L27 (2001).
[CrossRef]

Other (3)

A. Halimaoui, “Pourous silicon formation by anodisation,” in Properties of Porous Silicon, L.T.Canham, ed. (Institution of Engineering and Technology, 1997), Sec. 1.2, pp.12-22.

M. Ghulinyan, Z. Gaburro, and L. Pavesi, in “Optical superlattices: where photons behave like electrons,” New Topics in Lasers and Electro-Optics, W. T. Arkin, ed. (Nova Science, 2006), Chap. 2, pp. 63-82.

S. E. Foss and T. G. Finstad, in Engineered Pososity for Microphotonics and Plasmonics, R. Wehrspohn, F. Garcial-Vidal, M. Notomi, and A. Scherer, eds., MRS Proceedings 707 (Materials Research Society, 2004), paper W.1.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the PSi bath. The chamber is divided in two by a Si wafer to be etched, the left-hand part being the etch chamber. (b) Tapered etch mask pattern on a Si wafer and (c) the resultant laterally graded PSi etch profile.

Fig. 2
Fig. 2

(a) SEM image of a PSi optical filter structure (near the SiN etch mask edge). (b) Resonance wavelength of the fabricated PSi optical filter as a function of the position along the taper axis. The inset compares a measured reflectance spectrum with the simulated one for the corresponding structure.

Fig. 3
Fig. 3

(a) SEM images of the fabricated PSi optical filter film after it is detached from the Si substrate. (b) Transmission spectra measured at different locations along the taper axis.

Fig. 4
Fig. 4

(a) Simulated hole current profile through the tapered shaped contact. (b) Two-dimensional map of the resonance wavelength determined from transmission spectrum measurements across the tapered etch window opening of the fabricated optical filter.

Metrics