Abstract

We study innovative interference security image structures based on metamerism. We have designed, fabricated, and evaluated different structures that can be used in transmission or in reflection. These metameric structures are either a combination of two different interference filters or of an interference filter and a noniridescent colored material. In the latter case, by closely matching the spectra, the sensitivity of the device to changes in light sources and observers is minimized. Because of the intrinsic color shift of interference filters, one can create a hidden image that appears at a specific observation angle. The presence of the hidden image, as well as in some cases of the noniridescent material, which serves as a color reference, increases the complexity of such devices while facilitating the user’s authentication process as well as automatized detection by using a laser at a specific angle. We present the design approach, analyze the filters’ sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 2007 Annual Report: Organized Crime in Canada (Criminal Intelligence Service Canada, 2007).
  2. “Counterfeit Medicines: Some Frequently Asked Questions,” (World Health Organization Regional Office for the Western Pacific, 2005), http://www.wpro.who.int/media_centre/fact_sheets/fs_20050506.htm (consulted 20 March 2007).
  3. R. van Renesse, Optical Document Security, 2nd ed. (Artech House, 1998),
  4. J. A. Dobrowolski, “Optical thin-film security devices” in [3], pp. 289-328.
  5. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  6. L. Setlakwe and L. A. DiNunzio, “Comparative analysis of public opinion research in the U.S. and Canada,” Proc. SPIE 5310, 13-24 (2004).
    [CrossRef]
  7. J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702-2717 (1989).
    [CrossRef] [PubMed]
  8. R. W. Phillips and A. F. Bleikolm, “Optical coatings for document security,” Appl. Opt. 35, 5529-5534 (1996).
    [CrossRef] [PubMed]
  9. R. W. Phillips and M. Nofi, “Colors by chemistry or by physics?” in Proceedings of the 42nd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 1999), pp. 494-499.
  10. P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
    [CrossRef]
  11. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 2000).
  12. J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).
  13. H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).
  14. J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
    [CrossRef]
  15. B. Baloukas, S. Larouche, and L. Martinu, “Playing with light--the quest for new optically variable devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 381-386.
  16. B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
    [CrossRef]
  17. R. W. Phillips and A. Argoitia, “Using vacuum roll coaters to produce anti-counterfeiting devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 145-152.
  18. B. Baloukas and L. Martinu, “Interference Security Image Structure”, U.S. Provisional Patent Application--60/745,404; Canadian Patent Application--VAL-475 (both 22 April 2006).
  19. Colorimetry, 3rd ed. (International Commission on Illumination (CIE), 2004),
  20. R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd ed. (Wiley , 2000).
  21. B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
    [CrossRef]
  22. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
    [CrossRef]
  23. D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105-1114(1989).
    [CrossRef]
  24. Guide to Using WVASE32 (J. A. Woollam, 2001).
  25. S. Larouche and L. Martinu, “Openfilters: open-source software for the design, optimization, and synthesis of optical filters” Appl. Opt. 47, C219-C230 (2008).
    [CrossRef] [PubMed]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2008 (1)

2006 (1)

B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
[CrossRef]

2004 (2)

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

L. Setlakwe and L. A. DiNunzio, “Comparative analysis of public opinion research in the U.S. and Canada,” Proc. SPIE 5310, 13-24 (2004).
[CrossRef]

2001 (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
[CrossRef]

1997 (1)

B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
[CrossRef]

1996 (1)

1989 (2)

1973 (1)

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

Argoitia, A.

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

R. W. Phillips and A. Argoitia, “Using vacuum roll coaters to produce anti-counterfeiting devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 145-152.

Baird, K. M.

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

Baloukas, B.

B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
[CrossRef]

B. Baloukas, S. Larouche, and L. Martinu, “Playing with light--the quest for new optically variable devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 381-386.

B. Baloukas and L. Martinu, “Interference Security Image Structure”, U.S. Provisional Patent Application--60/745,404; Canadian Patent Application--VAL-475 (both 22 April 2006).

Berns, R. S.

R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd ed. (Wiley , 2000).

Bleikolm, A. F.

Carman, P. D.

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

Coombs, P. G.

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

Cui, G.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
[CrossRef]

DiNunzio, L. A.

L. Setlakwe and L. A. DiNunzio, “Comparative analysis of public opinion research in the U.S. and Canada,” Proc. SPIE 5310, 13-24 (2004).
[CrossRef]

Dobrowolski, J. A.

J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702-2717 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

J. A. Dobrowolski, “Optical thin-film security devices” in [3], pp. 289-328.

Gerber, W. H.

H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).

Hardwick, B. A.

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

Hauser, H.

H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).

Hibbert, C. R.

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

Hill, B.

B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
[CrossRef]

Ho, F. C.

Iqbal, A.

H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).

Jackson, W. K.

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

Larouche, S.

S. Larouche and L. Martinu, “Openfilters: open-source software for the design, optimization, and synthesis of optical filters” Appl. Opt. 47, C219-C230 (2008).
[CrossRef] [PubMed]

B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
[CrossRef]

B. Baloukas, S. Larouche, and L. Martinu, “Playing with light--the quest for new optically variable devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 381-386.

Luo, M. R.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Martinu, L.

S. Larouche and L. Martinu, “Openfilters: open-source software for the design, optimization, and synthesis of optical filters” Appl. Opt. 47, C219-C230 (2008).
[CrossRef] [PubMed]

B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
[CrossRef]

B. Baloukas, S. Larouche, and L. Martinu, “Playing with light--the quest for new optically variable devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 381-386.

B. Baloukas and L. Martinu, “Interference Security Image Structure”, U.S. Provisional Patent Application--60/745,404; Canadian Patent Application--VAL-475 (both 22 April 2006).

Mattox, D. M.

D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105-1114(1989).
[CrossRef]

Maurer, P.

H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).

Nofi, M.

R. W. Phillips and M. Nofi, “Colors by chemistry or by physics?” in Proceedings of the 42nd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 1999), pp. 494-499.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Phillips, R. W.

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

R. W. Phillips and A. F. Bleikolm, “Optical coatings for document security,” Appl. Opt. 35, 5529-5534 (1996).
[CrossRef] [PubMed]

R. W. Phillips and A. Argoitia, “Using vacuum roll coaters to produce anti-counterfeiting devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 145-152.

R. W. Phillips and M. Nofi, “Colors by chemistry or by physics?” in Proceedings of the 42nd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 1999), pp. 494-499.

Raksha, V. P.

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
[CrossRef]

Roger, T.

B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
[CrossRef]

Setlakwe, L.

L. Setlakwe and L. A. DiNunzio, “Comparative analysis of public opinion research in the U.S. and Canada,” Proc. SPIE 5310, 13-24 (2004).
[CrossRef]

Stiles, W.

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 2000).

Taylor, J. C.

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

van Renesse, R.

R. van Renesse, Optical Document Security, 2nd ed. (Artech House, 1998),

Vorhagen, F. W.

B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
[CrossRef]

Waldorf, A.

J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702-2717 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 2000).

Zientek, P.

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

ACM (Assoc. Comput. Mach.) Trans. Graphics (1)

B. Hill, T. Roger, and F. W. Vorhagen, “Comparative analysis of quantization of color spaces on the basis of the CIELAB color-difference formula,” ACM (Assoc. Comput. Mach.) Trans. Graphics 16, 109-154 (1997).
[CrossRef]

Appl. Opt. (3)

Color Res. Appl. (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340-350 (2001).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105-1114(1989).
[CrossRef]

Opt. Acta (1)

J. A. Dobrowolski, K. M. Baird, P. D. Carman, and A. Waldorf, “Optical interference coatings for inhibiting of counterfeiting,” Opt. Acta 20, 925-937 (1973).
[CrossRef]

Proc. SPIE (3)

L. Setlakwe and L. A. DiNunzio, “Comparative analysis of public opinion research in the U.S. and Canada,” Proc. SPIE 5310, 13-24 (2004).
[CrossRef]

P. G. Coombs, A. Argoitia, V. P. Raksha, and R. W. Phillips, “Integration of contrasting technologies into advanced optical security devices,” in Proc. SPIE 5310, 299-311 (2004).
[CrossRef]

B. Baloukas, S. Larouche, and L. Martinu, “Use of metameric filters for future interference security image structures,” in Proc. SPIE 6075, 60750T (2006).
[CrossRef]

Other (16)

R. W. Phillips and A. Argoitia, “Using vacuum roll coaters to produce anti-counterfeiting devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 145-152.

B. Baloukas and L. Martinu, “Interference Security Image Structure”, U.S. Provisional Patent Application--60/745,404; Canadian Patent Application--VAL-475 (both 22 April 2006).

Colorimetry, 3rd ed. (International Commission on Illumination (CIE), 2004),

R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, 3rd ed. (Wiley , 2000).

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 2000).

J. C. Taylor, B. A. Hardwick, W. K. Jackson, P. Zientek, and C. R. Hibbert, “Self-verifying security documents,” U.S. Patent 7,040,664 (9 May 2006).

H. Hauser, W. H. Gerber, A. Iqbal, and P. Maurer, “Method of producing forgery-proof colored printed articles,” U.S. Patent 6,013,307 (11 January 2000).

Guide to Using WVASE32 (J. A. Woollam, 2001).

2007 Annual Report: Organized Crime in Canada (Criminal Intelligence Service Canada, 2007).

“Counterfeit Medicines: Some Frequently Asked Questions,” (World Health Organization Regional Office for the Western Pacific, 2005), http://www.wpro.who.int/media_centre/fact_sheets/fs_20050506.htm (consulted 20 March 2007).

R. van Renesse, Optical Document Security, 2nd ed. (Artech House, 1998),

J. A. Dobrowolski, “Optical thin-film security devices” in [3], pp. 289-328.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

B. Baloukas, S. Larouche, and L. Martinu, “Playing with light--the quest for new optically variable devices,” in Proceedings of the 48th Annual Technical Conference of the Society of Vacuum Coaters, (Society of Vacuum Coaters, 2005), pp. 381-386.

R. W. Phillips and M. Nofi, “Colors by chemistry or by physics?” in Proceedings of the 42nd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 1999), pp. 494-499.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission spectra of metameric filters A and B (solid curves) under illuminant D65 at normal incidence. The experimental curves are also shown (dotted curves). Take note of the high difference in transmission at 632.8 nm , the wavelength of a He–Ne laser. Δ E ab * between both theoretical filters for several illuminants are Δ E ab , D 65 * = 0.24 , Δ E ab , A * = 39.00 , and Δ E ab , F 1 * = 14.47 .

Fig. 2
Fig. 2

Color variation in the CIE x y color space of filters A (circles) and B (triangles) as a function of the observation angle ( 0 ° 70 ° ). The square represents the reference white. Calculations are done for the D65 illuminant.

Fig. 3
Fig. 3

Comparison between the transmission spectra of a NIM (solid curve) and interference filter C (dotted curve). Δ E ab * is also shown under different illuminants.

Fig. 4
Fig. 4

Color variation in the CIE x y color space of filter C as a function of the observation angle ( 0 ° 70 ° ). Circles represent transmission, triangles reflection, and the square is the reference white. Calculations are done for the D65 illuminant. The dashed lines connect complementary colors.

Fig. 5
Fig. 5

Comparison of the reflection spectra between gold (solid curve) and filter D (dotted curve). The dashed curve represents the photopic luminous efficiency curve of the average human eye. Δ E ab * is also shown under different illuminants.

Fig. 6
Fig. 6

Δ E ab , D 65 * as a function of deposition error between (a) simulated filters A and B and (b) filter C and its initial design. The (1.000, 1.000) coordinates correspond to the original filters.

Fig. 7
Fig. 7

Comparison between the transmission spectra of filter design C (solid curve) and the deposited interference filter (dotted curve). Δ E ab * is also shown under different illuminants.

Fig. 8
Fig. 8

Transmission device observed at different angles of incidence (approximate). Notice that because of the initial spectral mismatch, the color match occurs around 20 ° . Colors may vary due to display and printing limitations.

Fig. 9
Fig. 9

Comparison of the transmission spectra between design D (solid curve) and the deposited filter (dotted curve). Δ E ab * is also shown under different illuminants.

Tables (2)

Tables Icon

Table 1 Deposition Parameters in the Dual Ion Beam Sputtering System

Tables Icon

Table 2 Design of Filters A, B, C, and D

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L * = 116 ( Y Y n ) 1 / 3 16 ,
a * = 500 [ ( X X n ) 1 / 3 ( Y Y n ) 1 / 3 ] ,
b * = 200 [ ( Y Y n ) 1 / 3 ( Z Z n ) 1 / 3 ] ,
Δ E ab , I * = ( L 2 * L 1 * ) 2 + ( a 2 * a 1 * ) 2 + ( b 2 * b 1 * ) 2 .

Metrics