Abstract

It is advantageous for some diffractive optical element (DOE) applications to produce different output patterns in different circumstances. There has been considerable work on the design of wavelength multiplexing DOEs and in devices where the polarization of the incident light determines the output. One parameter that has not, to our knowledge, been exploited for pattern formation DOEs is the mode of operation, i.e., whether the element works in reflection or transmission. We present an approach for designing such devices and design an element with modeled efficiency, mean square error (MSE), and cross-talk of 65.9, 2.52, and 4.2% in transmission and 66.6, 2.50, and 3.5% in reflection. The element has been successfully fabricated and has measured efficiencies of 58.3%±2 in reflection and 68.8%±5 in transmission are reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).
  2. K. Ballüder and M. R. Taghizadeh, “Regenerative ring-laser design by use of an intracavity diffractive mode-selecting element,” Appl. Opt. 38, 5768-5774 (1999).
    [CrossRef]
  3. M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).
  4. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18, 1214-1216 (1993).
    [CrossRef] [PubMed]
  5. Y. Ha , H. Hua, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97-107 (2003).
    [CrossRef] [PubMed]
  6. H. Dammann, “Color separation gratings,” Appl. Opt. 17, 2273-2279 (1978).
    [CrossRef] [PubMed]
  7. J. Bengtsson, “Kinoforms designed to produce different fan-out patterns for two wavelengths,” Appl. Opt. 37, 2011-2020(1998).
    [CrossRef]
  8. J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002).
    [CrossRef]
  9. M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
    [CrossRef]
  10. B. Dong, R. Liu, and J. Wang, “Polarized pseudonondiffracting beams generated by polarization-selective diffractive phase elements,” Appl. Opt. 38, 3089-3092 (1999).
    [CrossRef]
  11. U. D. Zeitner, B. Schnabel, E.-B.Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels,” Appl. Opt. 38, 2177-2181 (1999).
    [CrossRef]
  12. B. Grzybowski, D. Qin, and G. Whitesides, “Beam redirection and frequency filtering with transparent elastomeric diffractive elements,” Appl. Opt. 38, 2997-3002 (1999).
    [CrossRef]
  13. J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
    [CrossRef]
  14. N. Yoshikawa, M. Itoh, and T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483-1485 (1998).
    [CrossRef]
  15. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739-1748 (1967).
    [CrossRef] [PubMed]
  16. L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
    [CrossRef]
  17. N. Gallagher, “Binary phase digital reflection holograms-fabrication and potential applications,” Appl. Opt. 16, 413-417(1977).
    [CrossRef] [PubMed]
  18. K. Choi, H. Kim, and B. Lee. “Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA,” Opt. Express 12, 5229-5236 (2004).
    [CrossRef] [PubMed]
  19. A. J. Caley, M. J. Thomson, J.-S. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007).
    [CrossRef] [PubMed]
  20. A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
    [CrossRef]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).
  22. J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
    [CrossRef]
  23. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  24. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
    [CrossRef]
  25. I. M. Barton, P. Blair, and M. R. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54-59 (1998).
    [CrossRef]
  26. U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels.” Appl. Opt. 38, 2177-2181 (1999).
    [CrossRef]
  27. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
[CrossRef]

2005 (1)

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
[CrossRef]

2004 (1)

2003 (2)

Y. Ha , H. Hua, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97-107 (2003).
[CrossRef] [PubMed]

M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).

2002 (2)

M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).

J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002).
[CrossRef]

2000 (1)

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

1999 (5)

1998 (3)

1997 (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

1993 (2)

1991 (1)

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

1978 (1)

1977 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).

1969 (1)

L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
[CrossRef]

1967 (1)

Ballüder, K.

Barton, I. M.

I. M. Barton, P. Blair, and M. R. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54-59 (1998).
[CrossRef]

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

Bengtsson, J.

Blair, P.

I. M. Barton, P. Blair, and M. R. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54-59 (1998).
[CrossRef]

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

Caley, A. J.

A. J. Caley, M. J. Thomson, J.-S. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007).
[CrossRef] [PubMed]

J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
[CrossRef]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
[CrossRef]

Choi, K.

Dammann, H.

Dong, B.

Dong, B. Z.

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

Farn, M. W.

Gallagher, N.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).

Grzybowski, B.

Gu, B. Y.

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Hirsch, P.

L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
[CrossRef]

Hua, H.

Ichikawa, H.

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Itoh, M.

Jordan, J.

L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
[CrossRef]

Kim, H.

Kley, E.-B.

Layet, B.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

Lee, B.

Lesem, L.

L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
[CrossRef]

Liu, J. S.

J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
[CrossRef]

Liu, J.-S.

Liu, R.

Lo, M.

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

Lohmann, A. W.

Lu, M. H.

J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002).
[CrossRef]

Medeiros, S. S.

Meyrueis, P.

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

Miller, J. M.

J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
[CrossRef] [PubMed]

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Noponen, E.

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Paris, D. P.

Qin, D.

Rolland, J. P.

Ross, N.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
[CrossRef] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).

Schnabel, B.

Stern, M. B.

Sze, J. R.

J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002).
[CrossRef]

Taghizadeh, M. R.

A. J. Caley, M. J. Thomson, J.-S. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007).
[CrossRef] [PubMed]

J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
[CrossRef]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
[CrossRef]

M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).

M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).

K. Ballüder and M. R. Taghizadeh, “Regenerative ring-laser design by use of an intracavity diffractive mode-selecting element,” Appl. Opt. 38, 5768-5774 (1999).
[CrossRef]

I. M. Barton, P. Blair, and M. R. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54-59 (1998).
[CrossRef]

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
[CrossRef] [PubMed]

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Thomson, M. J.

Turunen, J.

J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
[CrossRef] [PubMed]

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Vasara, A.

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Veldkamp, W. B.

Waddie, A. J.

A. J. Caley, M. J. Thomson, J.-S. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15, 10699-10704 (2007).
[CrossRef] [PubMed]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
[CrossRef]

M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

Wang, J.

Westerholm, J.

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Whitesides, G.

Wyrowski, F.

Yatagai, T.

Yoshikawa, N.

Zeitner, U. D.

Acta Phys. Pol. A (1)

M. R. Taghizadeh and A. J. Waddie, “Micro-optical and optoelectronic components for optical interconnection applications” Acta Phys. Pol. A , 101, 175-188 (2002).

Appl. Opt. (11)

J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519-2525 (1993).
[CrossRef] [PubMed]

J. Bengtsson, “Kinoforms designed to produce different fan-out patterns for two wavelengths,” Appl. Opt. 37, 2011-2020(1998).
[CrossRef]

U. D. Zeitner, B. Schnabel, E.-B.Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels,” Appl. Opt. 38, 2177-2181 (1999).
[CrossRef]

U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-strip grating pixels.” Appl. Opt. 38, 2177-2181 (1999).
[CrossRef]

B. Grzybowski, D. Qin, and G. Whitesides, “Beam redirection and frequency filtering with transparent elastomeric diffractive elements,” Appl. Opt. 38, 2997-3002 (1999).
[CrossRef]

B. Dong, R. Liu, and J. Wang, “Polarized pseudonondiffracting beams generated by polarization-selective diffractive phase elements,” Appl. Opt. 38, 3089-3092 (1999).
[CrossRef]

K. Ballüder and M. R. Taghizadeh, “Regenerative ring-laser design by use of an intracavity diffractive mode-selecting element,” Appl. Opt. 38, 5768-5774 (1999).
[CrossRef]

A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739-1748 (1967).
[CrossRef] [PubMed]

N. Gallagher, “Binary phase digital reflection holograms-fabrication and potential applications,” Appl. Opt. 16, 413-417(1977).
[CrossRef] [PubMed]

H. Dammann, “Color separation gratings,” Appl. Opt. 17, 2273-2279 (1978).
[CrossRef] [PubMed]

Y. Ha , H. Hua, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97-107 (2003).
[CrossRef] [PubMed]

IBM J. Res. Dev. (1)

L. Lesem, P. Hirsch, and J. Jordan Jr, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150-155, (1969).
[CrossRef]

J. Mod. Opt. (1)

M. J. Thomson and M. R. Taghizadeh, “Diffractive elements for high-power fibre coupling applications,” J. Mod. Opt. 50, 1691-1699 (2003).

J. Opt. A Pure Appl. Opt. (1)

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for 2 colour far-field pattern formation,” J. Opt. A Pure Appl. Opt. 7, S276(2005).
[CrossRef]

Microelectron. Eng. (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219-242 (1997).
[CrossRef]

Opt. Commun. (3)

J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier transform algorithm using both phase and amplitude freedom,” Opt. Commun. 267, 347-355 (2006).
[CrossRef]

M. Lo, B. Z. Dong, B. Y. Gu, and P. Meyrueis, “Non-periodic diffractive phase element for wavelength-division (de)multiplexing,” Opt. Commun. 173, 217-221 (2000).
[CrossRef]

J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, and J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383-392 (1991).
[CrossRef]

Opt. Eng. (1)

J. R. Sze and M. H. Lu, “Design and fabrication of the diffractive phase element that synthesizes three-color pseudo-nondiffracting beams,” Opt. Eng. 41, 3127-3135 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (Jena) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffractive plane pictures,” Optik (Jena) 35, 237-246 (1972).

Other (1)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the operation of a simultaneous reflection and transmission device.

Fig. 2
Fig. 2

Illustration of the quantization process.

Fig. 3
Fig. 3

Input designs used for desired output intensity profiles. (a) has dimensions of 80 × 30 pixels, (b)  63 × 27 pixels.

Fig. 4
Fig. 4

Modeled outputs of the quantized profile operating in (a) reflection and (b) transmission modes.

Fig. 5
Fig. 5

Experimental setup for measuring efficiency and capturing output images.

Fig. 6
Fig. 6

Output images from the fabricated element. The reflection case is shown in (a) and the transmission case in (b).

Fig. 7
Fig. 7

Output images from the fabricated element when illuminated by an LED source. The reflection case is shown in (a) and the transmission case in (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ T = 2 π [ n ( λ ) 1 ] h / λ ,
ϕ R = 4 π h / λ .
α RT = 2 / ( n 1 )
δ L , M = | ϕ L , M eff Φ M | ,
MSE = 1 M P ( F ( X , Y ) F ¯ G ( X , Y ) G ¯ ) 2 ,
η = P F ( X , Y ) A E g ( x , y ) .
cross-talk = S F ( X , Y ) E g ( x , y ) ,

Metrics