Abstract

We fabricated an asymmetric long-period grating (LPG) by periodically tapering a section of standard single-mode fiber using a resistive filament heating. The LPG exhibits large peak transmission attenuation of 30.31dB with only 22 periods in a 1.0cm long optical fiber and possesses unique characteristics for sensing applications. The bending and strain sensitivities are 1.74nmm and 1.11pm/με, respectively. The polarization dependent loss is large, up to 11.65dB, which is caused by an asymmetric index profile in the cross section of the tapered LPG.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
    [CrossRef]
  2. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
    [CrossRef]
  3. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24, 1263-1265 (1999).
    [CrossRef]
  4. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
    [CrossRef]
  5. Y. Zhu, P. Shum, J.-H. Chong, M. K. Rao, and C. Lu, “Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber,” Opt. Lett. 28, 2467-2469 (2003).
    [CrossRef] [PubMed]
  6. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
    [CrossRef]
  7. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816-6823 (2003).
    [CrossRef] [PubMed]

2006 (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

2003 (2)

1999 (1)

1998 (3)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Bachim, B. L.

Chang, C. C.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

Chong, J.-H.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Gaylord, T. K.

B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816-6823 (2003).
[CrossRef] [PubMed]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

Hwang, I. K.

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

Jin, W.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Kim, B. Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Lu, C.

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Patrick, H. J.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

Peng, G.-D.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

Rao, M. K.

Rao, Y.-J.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Shum, P.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

Vohra, S. T.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

Wang, D. N.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Wang, Y.-P.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Yun, S. H.

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Electron. Lett. (2)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-304 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE Photonics Technol. Lett. 10, 1449-1551(1998).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup for LPG fabrication. (b) Photograph obtained from a CCD camera showing a section of LPG fabricated by resistive filament heating; Λ is 457 μm .

Fig. 2
Fig. 2

Transmission spectrum evolution of the LPG with the grating pitch of 457 μm while periods vary from four to 22.

Fig. 3
Fig. 3

(a) Transmission spectrum evolution of the tapered LPG. (b) Variations of the resonant wavelength and the peak attenuation corresponding to different curvatures introduced to the tapered LPG.

Fig. 4
Fig. 4

(a) Transmission spectrum evolution of the tapered LPG. (b) Variations of the resonant wavelength and the peak attenuation corresponding to different tensile strain applied to the tapered LPG.

Fig. 5
Fig. 5

PDL evolution of the tapered LPG with different tensile strains.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n residue + Δ n taper ,

Metrics