Abstract

An experimental optimization of the efficiency of a gain switched tunable Cr4+: YAG laser at 10Hz is described. The thermal lensing during pulsed operation was measured. Optimal performance occurred at a crystal temperature of 34°C and resulted in an output energy of 7mJ and a pulse duration of 35ns. Tunability in the range of 13501500nm, spectral linewidth of 200GHz, and M2<4 are demonstrated. The main laser material parameters are estimated. Such a laser could be employed in a laboratory-based nonscanning lidar system if a narrowband birefringent filter is installed. The tunability will permit the improvement of the Cr4+: YAG transmitter for water-vapor differential absorption lidar if injection seeding is applied.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American National Standard for the Safe Use of Lasers, “Standard for the safe use of lasers,” Tech. Rep. ANSI Z136.1-2000 (American National Standards Institute2000).
  2. M. S. Spuler and S. D. Mayor, “Raman-shifter optimized for lidar at 1.5 μm wavelength,” Appl. Opt. 46, 2990-2995 (2007).
    [CrossRef] [PubMed]
  3. P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999).
    [CrossRef]
  4. M. S. Webb, P. F. Moulton, J. J. Kasinski, R. I. Burnham, G. Loiacono, and R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23, 1161-1163 (1998).
    [CrossRef]
  5. A. V. Smith and D. J. Armstrong, “Nanosecond optical parametric oscillator with 90o image rotation: design and performance,” J. Opt. Soc. Am. B 19, 1801-1814 (2002).
    [CrossRef]
  6. S. D. Mayor and S. M. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
    [CrossRef] [PubMed]
  7. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).
    [CrossRef]
  8. V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304-5320(2001).
    [CrossRef]
  9. V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
    [CrossRef]
  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
    [CrossRef]
  11. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
    [CrossRef]
  12. A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
    [CrossRef]
  13. I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
    [CrossRef]
  14. A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.
  15. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287-352 (2002).
    [CrossRef]
  16. H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
    [CrossRef]
  17. P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
    [CrossRef]
  18. N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).
  19. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
    [CrossRef]
  20. A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994).
    [CrossRef]
  21. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562(2001).
  22. S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
    [CrossRef]
  23. A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.
  24. S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.
  25. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), pp. 66-70.
  26. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
    [CrossRef]
  27. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
    [CrossRef]
  28. I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
    [CrossRef]
  29. A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.
  30. P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966).
    [CrossRef]
  31. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548-2553 (1970).
    [CrossRef] [PubMed]
  32. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997).
  33. G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045-8055 (2005).
    [CrossRef] [PubMed]
  34. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107-117 (1986).
    [CrossRef] [PubMed]
  35. J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
    [CrossRef]
  36. A. E. Siegman, Lasers (University Science Books, 1986), p. 465.
  37. X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505-4508 (1992).
    [CrossRef] [PubMed]
  38. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system,” Appl. Opt. 44, 582-590 (2005).
    [CrossRef] [PubMed]
  39. A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

2007 (1)

2005 (2)

2004 (1)

2003 (1)

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
[CrossRef]

2002 (2)

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

A. V. Smith and D. J. Armstrong, “Nanosecond optical parametric oscillator with 90o image rotation: design and performance,” J. Opt. Soc. Am. B 19, 1801-1814 (2002).
[CrossRef]

2001 (3)

1999 (3)

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999).
[CrossRef]

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

1998 (3)

1996 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

1995 (1)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

1994 (3)

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994).
[CrossRef]

1993 (1)

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

1992 (2)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505-4508 (1992).
[CrossRef] [PubMed]

1990 (1)

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

1988 (1)

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

1986 (1)

1975 (1)

J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
[CrossRef]

1970 (1)

1966 (1)

P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966).
[CrossRef]

Alcock, A. J.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
[CrossRef]

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Armstrong, D. J.

Avizonis, P.

P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966).
[CrossRef]

Bauer, H.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Behrendt, A.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Borodin, N. I.

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Bösenberg, J.

Brown, C. T. A.

A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Burnham, R. I.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Dennis, W. M.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Diettrich, J. C.

I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Eilers, H.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Grotbeck, R.

P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966).
[CrossRef]

Herziger, G.

J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
[CrossRef]

Hnatovsky, K.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
[CrossRef]

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997).

Hoffman, K. R.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Huber, G.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.

Jacobsen, S. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Jia, W.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

Kappe, P.

Kasinski, J. J.

Killinger, D.

P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999).
[CrossRef]

Knox, W.

A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.

Koechner, W.

Kück, S.

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562(2001).

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.

Lagatsky, A. A.

A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.

Loiacono, G.

Lörtscher, J. P.

J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
[CrossRef]

Magni, V.

Mamidipudi, P.

P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Mathieu, P.

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

Mayor, S. D.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

McKinnie, I. T.

I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
[CrossRef]

Menzel, R.

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

Moulton, P. F.

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

Naumov, S.

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Okhrimchuk, A. G.

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994).
[CrossRef]

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Ostermeyer, M.

Pal, S.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Parent, A.

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

Peressini, D.

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Peterman, K.

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.

Petermann, K.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

Petrova, A.

A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.

Petrova-Mayor, A.

A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

Riede, A.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Schiller, M.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Schönhoff, U.

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Scorah, P.

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

Shestakov, A. V.

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994).
[CrossRef]

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), pp. 66-70.

Shiler, M.

Sibbett, W.

A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), p. 465.

Smith, A. V.

Snell, K.

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

Sorokin, E.

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

Sorokina, I. T.

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

Spuler, M. S.

Spuler, S. M.

Steffen, J.

J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
[CrossRef]

Stolzenberger, R.

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

Tashiro, H.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Wagner, G.

G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045-8055 (2005).
[CrossRef] [PubMed]

A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

Walther, C.

Wang, X.

Warrington, D. M.

I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Webb, M. S.

Weber, H.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997).

Weibring, P.

A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.

White, R. T.

I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
[CrossRef]

Wintner, E.

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

Wulfmeyer, V.

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system,” Appl. Opt. 44, 582-590 (2005).
[CrossRef] [PubMed]

G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045-8055 (2005).
[CrossRef] [PubMed]

V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304-5320(2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
[CrossRef]

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).
[CrossRef]

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.

A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.

Yao, J.

Yen, W. M.

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Zhinyuk, V. A.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Zhitnyuk, V. A.

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

Zverev, G. M.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), pp. 66-70.

Appl. Opt. (9)

M. S. Spuler and S. D. Mayor, “Raman-shifter optimized for lidar at 1.5 μm wavelength,” Appl. Opt. 46, 2990-2995 (2007).
[CrossRef] [PubMed]

S. D. Mayor and S. M. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004).
[CrossRef] [PubMed]

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825-3844 (1998).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304-5320(2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of a ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321-5336 (2001).
[CrossRef]

W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548-2553 (1970).
[CrossRef] [PubMed]

V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107-117 (1986).
[CrossRef] [PubMed]

X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505-4508 (1992).
[CrossRef] [PubMed]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode pumped Nd:YAG MOPA with high pulse energy, excellent beam quality and frequency stabilized master oscillator as a basis for a next generation lidar system,” Appl. Opt. 44, 582-590 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (2)

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562(2001).

S. Kück, K. Peterman, U. Pohlmann, U. Schönhoff, and G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxA5-xO12,” Appl. Phys. B 58, 153-156 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958-2960(1992).
[CrossRef]

Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) (1)

N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region 1.34-1.6 μm,” Bull. Acad. Sci. USSR Phys. Ser. (Engl. Transl.) 54, 54-60 (1990).

IEEE J. Quantum Electron. (2)

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548-1553 (1999).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508-2512 (1993).
[CrossRef]

J. Appl. Phys. (1)

P. Avizonis and R. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687-693(1966).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996).
[CrossRef]

Opt. Commun. (1)

A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153-157 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 22, 1578-1580(1999).
[CrossRef]

M. S. Webb, P. F. Moulton, J. J. Kasinski, R. I. Burnham, G. Loiacono, and R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23, 1161-1163 (1998).
[CrossRef]

Opt. Mater. (1)

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1-13 (1994).
[CrossRef]

Opt. Quantum Electron. (1)

J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505-514 (1975).
[CrossRef]

Phys. Rev. B (1)

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

Proc. SPIE (2)

I. T. McKinnie, J. C. Diettrich, R. T. White, and D. M. Warrington, “Dynamics of gain-switched Cr4+:YAG lasers,” Proc. SPIE 3265, 295 (1998).
[CrossRef]

P. Mathieu, A. Parent, K. Snell, and D. Peressini, “Tunable gain-switched chromium YAG laser,” Proc. SPIE 2041, 348(1994).
[CrossRef]

Proc. SPIE, (1)

P. Mamidipudi and D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO atmospheric lidar,” Proc. SPIE, 3707, 327-335 (1999).
[CrossRef]

Prog. Quantum Electron. (1)

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287-352 (2002).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhinyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quantum Electron. 18, 73-74 (1988).
[CrossRef]

Other (9)

American National Standard for the Safe Use of Lasers, “Standard for the safe use of lasers,” Tech. Rep. ANSI Z136.1-2000 (American National Standards Institute2000).

A. A. Lagatsky, C. T. A. Brown, W. Sibbett, and W. Knox, “Self-starting passively mode-locked femtosecond Cr4+:YAG laser diode pumped by a Yb-fiber,” in Conference on Lasers and Electro-Optics, Vol. 73 of 2002 OSA Technical Digest Series (Optical Society of America, 2002), pp. 339-340.

A. Petrova, G. Wagner, and V. Wulfmeyer, “Eye-safe LIDAR transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 22nd International Laser Radar Conference (ILRC) (ESA SP-561, 2004), Vol. 1, pp. 199-202.

A. Petrova-Mayor, V. Wulfmeyer, and P. Weibring, “An eye-safe, tunable lidar transmitter at 1.45 μm based on a Cr4+:YAG laser,” in 23d International Laser Radar Conference (ILRC) (ICLAS, 2006), Vol. 1, pp. 201-204.

S. Kück, K. Peterman, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in OSA Proceedings on Advanced Solid-State Lasers, Vol. 10 (Optical Society of America, 1991), pp. 92-94.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), pp. 66-70.

A. E. Siegman, Lasers (University Science Books, 1986), p. 465.

A. Behrendt, V. Wulfmeyer, M. Schiller, A. Riede, H. Bauer, G. Wagner, and S. Pal, “Water vapour differential absorption lidar measurements at Hornisgrinde during COPS,” presented at the DACH Meteorologentagung Hamburg, Germany, 10-14 September 2007.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Photograph and a diagram of the experimental layout of Cr 4 + : YAG laser. The image in the white circle is an expanded view of the resonator. TFP 1 , TFP 2 : thin-film polarizers at Brewster angle; λ / 2 P 1 , λ / 2 P 2 : half-wave-plates; D: beam dump; L 1 : cylindrical lens; L 2 : plano–convex lens; L 3 : plano–concave lens; H R 1 H R 5 : high reflectivity mirrors for 1064 nm ; L 4 : focusing lens for the spatial filter; BW 1 , BW 2 : fused silica windows at Brewster angle; PH: pinhole; G: gauge; PI: pressure indicator; VP: vacuum pump; L 5 : recollimating lens; L 6 : plano-concave lens; GM: gold-coated mirror; DFB LD: distributed feedback laser diode; DC: dichroic mirror; BF: birefringent filter; OC: output coupler; EM: energy meter; F: interference filter; PD 1 , PD 2 : photodetectors.

Fig. 2
Fig. 2

Solid model of the crystal cooler. C: clamp shells; G: gold coating; TEC: Peltier thermoelectric cooler; W: block with circulating water.

Fig. 3
Fig. 3

Transmission of the pump radiation (experimental T exp and fitted T fit ), absorbed energy ( E abs , 2 and E abs , 3 for 2 and 3 mm pump beams, respectively) and calculated inversion population ratio ( n i / n T ) versus pump energy fluence.

Fig. 4
Fig. 4

Output characteristics of resonators with radius of the fundamental mode in the range of 0.5 to 0.8 mm . The resonators were comprised of a flat rear mirror placed at L 1 = 0.1 m from the crystal and an OC as indicated in the legend. The temperature of the crystal was 15 ° C . The pump beam diameter was 2.1 mm × 2.2 mm . (a) Output energy and (b) build-up time (dashed curves) and pulse duration (solid curves) versus absorbed pump energy.

Fig. 5
Fig. 5

Same as Fig. 4a but for pump beam diameter 3.0 mm × 3.2 mm .

Fig. 6
Fig. 6

Output energy versus temperature of the crystal for different absorbed pump energies. The resonator had a flat rear mirror placed at distance L 1 = 0.1 m and an OC of R 2 = 3 m , R = 90 % at L 2 = 0.57 m from the crystal. The pump beam diameter was 3.0 mm × 3.2 mm .

Fig. 7
Fig. 7

Output energy versus temperature of the crystal for absorbed pump energy of 115 mJ and different resonator configurations. The resonators were comprised of a flat rear mirror placed at L 1 = 0.1 m from the crystal and output coupler as indicated in the legend. The pump beam diameter was 3.0 mm × 3.2 mm .

Fig. 8
Fig. 8

Output energy as a function of the absorbed energy for different resonator configurations using a flat rear mirror placed at L 1 = 0.1 m from the crystal and OCs as indicated in the legend. The crystal temperature was optimal temperature for the maximum pump energy of 130 mJ . The pump beam diameter was 3.0 mm × 3.2 mm .

Fig. 9
Fig. 9

Tuning curves of two resonator configurations for 105 mJ absorbed pump energy. The resonators were comprised of a flat rear mirror placed at L 1 = 0.065 m from the crystal and OCs as indicated in the legend. The pump beam diameter was 3.0 mm × 3.2 mm .

Fig. 10
Fig. 10

Output energy as a function of the absorbed pump energy for different resonator configurations using a flat rear mirror placed at L 1 = 0.065 m from the crystal and OCs as indicated in the legend. The laser was tuned at 1432 nm (except the case without a BF). The pump beam diameter was 3.0 mm × 3.2 mm .

Fig. 11
Fig. 11

Optical depth of suitable water-vapor absorption lines in the 1400 1500 nm spectral region for standard atmosphere and 100 m path length.

Fig. 12
Fig. 12

Laser beam profiles at a distance of 1.78 m [ 1.88 m in (b)] after the OC for various resonator configurations with a flat rear mirror placed at L 1 = 0.065 m and an OC R 2 = 2 m , R = 80 % . The lasers were tuned at 1432 nm . The pump beam diameter was 3.0 mm × 3.2 mm . (a)  L 2 = 0.135 m , T opt = 34 ° C ; (b)  L 2 = 0.135 m , T = 20 ° C ; (c)  L 2 = 0.57 m , T opt = 34 ° C .

Tables (2)

Tables Icon

Table 1 Stable Resonators for Cr 4 + : YAG Laser a

Tables Icon

Table 2 Suitable Water-Vapor Absorption Lines for Ground-Based DIAL

Metrics