Abstract

We demonstrate a compact all-fiber sampling probe for an optical coherence tomography (OCT) system. By forming a focusing lens directly on the tip of an optical fiber, a compact sampling probe could be implemented. To simultaneously achieve a sufficiently long working distance and a good lateral reso lution, we employed a large-mode area photonic crystal fiber (PCF) and a coreless silica fiber (CSF) of the same diameters. A working distance of up to 1270μm, a 3dB distance range of 2210μm, and a transverse resolution of 14.2μm were achieved with the implemented PCF lensed fiber; these values are comparable to those obtainable with a conventional objective lens having an NA of 0.25 (10×). The performance of the OCT system equipped with the proposed PCF lensed fiber is presented by showing the OCT images of a rat finger as a biological sample and a pearl as an in-depth sample.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).
  3. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).
  4. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
    [CrossRef] [PubMed]
  5. X. Liu, M. J. Cobb, and Y. Chen, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763-1765 (2004).
    [CrossRef] [PubMed]
  6. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, and Z. Chen, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]
  7. K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707-709(2003).
    [CrossRef] [PubMed]
  8. E. S. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13, 1334-1345 (2005).
    [CrossRef] [PubMed]
  9. K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
    [CrossRef]
  10. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
    [CrossRef]
  11. H. Yoda and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol. 19, 1910-1917 (2001).
    [CrossRef]
  12. G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006).
    [CrossRef] [PubMed]
  13. E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169-171 (2006).
    [CrossRef] [PubMed]
  14. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
    [CrossRef]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  16. T. A. Birks, J. C. Knight, and P. St. J.Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  17. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  18. T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
    [CrossRef]
  19. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562-1569 (1965).
    [CrossRef]
  20. W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987).
    [CrossRef]
  21. M. D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, “Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,” Opt. Lett. 28, 1645-1647 (2003).
    [CrossRef] [PubMed]
  22. S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
    [CrossRef]

2006 (4)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006).
[CrossRef] [PubMed]

E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169-171 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

X. Liu, M. J. Cobb, and Y. Chen, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763-1765 (2004).
[CrossRef] [PubMed]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
[CrossRef]

2003 (2)

2002 (1)

2001 (1)

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

1998 (1)

1997 (2)

T. A. Birks, J. C. Knight, and P. St. J.Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987 (1)

W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987).
[CrossRef]

1965 (1)

Beaurepaire, E.

Birks, T. A.

Bizheva, K.

Boccara, A. C.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

Chang, S.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

Choi, E.

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

Choi, E. S.

Choi, H. Y.

G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006).
[CrossRef] [PubMed]

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

Cobb, M. J.

Conry, M.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Drexler, W.

Dubois, A.

Emkey, W. M.

W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Folkenberg, J. R.

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gu, C.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Han, M.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

Hermann, B.

Hiraguri, N.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Hirooka, T.

T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
[CrossRef]

Hoelzenbein, T.

Holzwarth, R.

Hori, Y.

T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, Y. C.

Im, J. E.

Jacki, C. A.

W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987).
[CrossRef]

Jiang, Y.

Kazami, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Kim, J.

G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006).
[CrossRef] [PubMed]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

Knight, J. C.

Kogelnik, H.

Kong, G. J.

Lee, B. H.

Lee, J. W.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

Li, E.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

Matsumura, K.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

Mei, M.

Mogilevtsev, D.

Morichi, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Mortensen, N. A.

Mudhana, G.

Na, J.

Na, J. H.

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

Nakazawa, M.

T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
[CrossRef]

Nielsen, M. D.

Oh, K.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

Ohishi, I.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Ohnuki, H.

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Paek, U. C.

Park, B. H.

Pehamberger, H.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Russell, P. St. J.

Ryu, S. Y.

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

E. S. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13, 1334-1345 (2005).
[CrossRef] [PubMed]

Sattmann, H.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shiraishi, K.

H. Yoda and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol. 19, 1910-1917 (2001).
[CrossRef]

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Vabre, L.

Wacheck, V.

Wang, F.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Wang, Y.

Wu, J.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Yang, G. H.

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

Yaqoob, Z.

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

Yoda, H.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

T. Hirooka, Y. Hori, and M. Nakazawa, “Gaussian and sech approximations of mode field profiles in photonic crystal fibers,” IEEE Photonics Technol. Lett. 16, 1071-1073 (2004).
[CrossRef]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photonics Technol. Lett. 16, 2499-2501 (2004).
[CrossRef]

J Biomed. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Method and application areas of endoscopic optical coherence tomography,” J Biomed. 11, 063001-1-063001-19 (2006).

J. Lightwave Technol. (3)

K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, “A Lensed-fiber coupling scheme utilizing a graded-index fiber and a hemispherically ended coreless fiber tip,” J. Lightwave Technol. 15, 356-363(1997).
[CrossRef]

H. Yoda and K. Shiraishi, “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol. 19, 1910-1917 (2001).
[CrossRef]

W. M. Emkey and C. A. Jacki, “Analysis and evaluation of graded-index fiber lenses,” J. Lightwave Technol. 5, 1156-1164 (1987).
[CrossRef]

Nature Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Nature Neoplasia 2, 9-25 (2000).

Opt. Express (1)

Opt. Lett. (9)

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

X. Liu, M. J. Cobb, and Y. Chen, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763-1765 (2004).
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, and Z. Chen, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707-709(2003).
[CrossRef] [PubMed]

G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31, 894-896 (2006).
[CrossRef] [PubMed]

E. Li, “Characterization of a fiber lens,” Opt. Lett. 31, 169-171 (2006).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J.Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

M. D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, “Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,” Opt. Lett. 28, 1645-1647 (2003).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

S. Y. Ryu, H. Y. Choi, J. H. Na, E. Choi, G. H. Yang, and B. H. Lee, “Optical coherence tomography implemented by photonic crystal fiber,” Opt. Quantum Electron. 37, 1191-1198 (2005).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fabrication process of a lensed fiber. A piece of CSF is fusion spliced to a single mode fiber (SMF) and a lens is formed on the other end of the coreless silica fiber (CSF) using the electric arc discharge of a conventional fusion splicer.

Fig. 2
Fig. 2

Microscope images of the constructed (a) SMF125–CSF125, (b) SMF125–CSF150, and (c) SMF125–CSF180 lensed fibers. (d) The intensity of the beam backreflected from a mirror placed in front of the probe, which was plotted in terms of the distance from the mirror to the probe. The mirror distance giving the peak in the plot was defined as the working distance of the probe.

Fig. 3
Fig. 3

Intensity of the beam backreflected from a sharp edge reflector, a cleaved silicon wafer, placed at the focal plane of the probe and under lateral motion. The measurements were made with respect to the lateral distance of the sharp edge. By taking the 20–80% width of each curve slope, the spot size of the beam was obtained as the transverse resolutions of the corresponding probe.

Fig. 4
Fig. 4

Schematic diagram of the PCF230–CSF230 lensed fiber and the parameters for the ABCD matrix calculation: 2 w i is the initial beam size; n 1 and n 2 are the refractive indices of CSF and air, respectively; L c and L f are the length of CSF and the working distance, respectively; M 12 , M 23 , and M 34 are the system matrices.

Fig. 5
Fig. 5

Working distances of various lensed PCFs, which were calculated (solid curves) and measured (data points) with respect to (a) the length of the beam expanding region and (b) the radius of curvature. For plot (a), the radius of curvature was fixed at 230 μm , and for plot (b) the length of the beam expanding region was fixed at 1000 μm .

Fig. 6
Fig. 6

(a) Measurements for the (a) working distance and (b) the transverse resolution of the PCF230–CSF230 lensed fiber. The working distance was 1270 μm and its 3 dB distance range was as long as 2210 μm . The transverse resolution was measured as about 14.2 μm [red dots in (b)]; it was a little better than the transverse resolution obtained with a conventional OBJ lens ( 10 × , NA 0.25) [blue triangles in (b)]. The inset of (a) is the microscopic image of the implemented lensed PCF.

Fig. 7
Fig. 7

Schematic of an optical coherence tomography system. The proposed PCF230–CSF230 lensed fiber was used as the sampling probe.

Fig. 8
Fig. 8

OCT images of an in vitro rat finger (upper row) and a pearl (lower row) obtained using the PCF230–CSF230 lensed fiber (left column) and an OBJ ( 10 × , NA 0.25) lens (right column) as the sample probes. The image areas are 3.0 mm × 2.0 mm for the rat finger and 3.0 mm × 4.8 mm for the pearl.

Tables (1)

Tables Icon

Table 1 Specifications of the Implemented SMF–CSF Lensed Fibers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M = M 34 M 23 M 12 = [ A B C D ] ,
M 12 = [ 1 L c 0 1 ] , M 23 = [ 1 0 n 2 n 1 n 2 R n 1 n 2 ] , M 34 = [ 1 L f 0 1 ] .
A C a 2 + B D = 0 , a = λ n 1 π w i 2 .

Metrics