Abstract

A method for automating refractive-index measurements of fluids has been developed. An encoded rotation stage and position-sensitive detector enable automated reading of angles typically acquired by visual means. Two tunable lasers are used to obtain index measurements at ten discrete wavelengths across the visible spectrum. This method has been implemented on a Hilger–Chance refractometer from which the bulk refractive-index values for various transparent fluids have been measured. An index measurement accuracy of better than one part in the fourth decimal place for distilled water and a few parts in the fourth decimal place for higher index fluids is obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
    [CrossRef]
  2. J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
    [CrossRef]
  3. G. E. Fishter, “Refractometry,” in Applied Optics and Optical Engineering, Volume 4, Optical Instruments, Part 1, R. Kingslake, ed. (Academic, 1967), pp. 363-382.
  4. J. P. Borgogno, B. Lazarides, and E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020-4029 (1982).
    [CrossRef] [PubMed]
  5. E. Pelletier, “Methods for determining optical parameters of thin films,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 57-71.
  6. R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
    [CrossRef]
  7. J. V. Hughes, “A new precision refractometer,” J. of Sci, Instrum. 18, 234-237 (1941).
    [CrossRef]
  8. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22, 3070-3072(1983).
    [CrossRef] [PubMed]
  9. E. Moreels, C. de Greef, and R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010-3013 (1984).
    [CrossRef] [PubMed]
  10. S. G. Kaplan and J. H. Burnett, “Optical properties of fluids for 248 and 193 nm immersion photolithography,” Appl. Opt. 45, 1721-1724 (2006).
    [CrossRef] [PubMed]
  11. J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 715-741.
  12. L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 C,” J. Res. Natl. Bur. Stand. 20, 419-477 (1938).

2006 (2)

J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
[CrossRef]

S. G. Kaplan and J. H. Burnett, “Optical properties of fluids for 248 and 193 nm immersion photolithography,” Appl. Opt. 45, 1721-1724 (2006).
[CrossRef] [PubMed]

2004 (2)

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
[CrossRef]

1984 (1)

1983 (1)

1982 (1)

1941 (1)

J. V. Hughes, “A new precision refractometer,” J. of Sci, Instrum. 18, 234-237 (1941).
[CrossRef]

1938 (1)

L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 C,” J. Res. Natl. Bur. Stand. 20, 419-477 (1938).

Borgogno, J. P.

Burnett, J. H.

S. G. Kaplan and J. H. Burnett, “Optical properties of fluids for 248 and 193 nm immersion photolithography,” Appl. Opt. 45, 1721-1724 (2006).
[CrossRef] [PubMed]

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Castrejón-García, R.

J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
[CrossRef]

Castrejón-Pita, J. R.

J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
[CrossRef]

Cooney, G.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Cooper, P. R.

de Greef, C.

Finsy, R.

Fishter, G. E.

G. E. Fishter, “Refractometry,” in Applied Optics and Optical Engineering, Volume 4, Optical Instruments, Part 1, R. Kingslake, ed. (Academic, 1967), pp. 363-382.

French, R. H.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Green, S. E.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Herzingerand, C. M.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Hughes, J. V.

J. V. Hughes, “A new precision refractometer,” J. of Sci, Instrum. 18, 234-237 (1941).
[CrossRef]

Kaplan, S.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Kaplan, S. G.

Kostic, I.

Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
[CrossRef]

Lazarides, B.

Malacara, J. Z.

J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 715-741.

Morales, A.

J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
[CrossRef]

Moreels, E.

Pelletier, E.

J. P. Borgogno, B. Lazarides, and E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020-4029 (1982).
[CrossRef] [PubMed]

E. Pelletier, “Methods for determining optical parameters of thin films,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 57-71.

Pribil, G. K.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Sainov, S.

Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
[CrossRef]

Sarov, Y.

Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
[CrossRef]

Synowicki, R. A.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Taylor, J. K.

L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 C,” J. Res. Natl. Bur. Stand. 20, 419-477 (1938).

Tilton, L. W.

L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 C,” J. Res. Natl. Bur. Stand. 20, 419-477 (1938).

Yang, M. K.

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Appl. Opt. (4)

J. of Sci, Instrum. (1)

J. V. Hughes, “A new precision refractometer,” J. of Sci, Instrum. 18, 234-237 (1941).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 C,” J. Res. Natl. Bur. Stand. 20, 419-477 (1938).

J. Vac. Sci. Technol. B (1)

R. A. Synowicki, G. K. Pribil, G. Cooney, C. M. Herzingerand, S. E. Green, R. H. French, M. K. Yang, J. H. Burnett, and S. Kaplan, “Fluid refractive index measurements using rough surface and prism minimum deviation techniques,” J. Vac. Sci. Technol. B 22, 3450-3453 (2004).
[CrossRef]

Rev. Sci. Instrum. (2)

Y. Sarov, S. Sainov, and I. Kostic, , “Automatic VIS-near IR laser refractometer,” Rev. Sci. Instrum. 75, 3342-3344 (2004).
[CrossRef]

J. R. Castrejón-Pita, A. Morales, and R. Castrejón-García, “Critical angle laser refractometer,” Rev. Sci. Instrum. 77, 035101 (2006).
[CrossRef]

Other (3)

G. E. Fishter, “Refractometry,” in Applied Optics and Optical Engineering, Volume 4, Optical Instruments, Part 1, R. Kingslake, ed. (Academic, 1967), pp. 363-382.

E. Pelletier, “Methods for determining optical parameters of thin films,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991), pp. 57-71.

J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 715-741.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hilger–Chance refractometer test cell with basic parameters.

Fig. 2
Fig. 2

Basic Hilger–Chance components: I, encoded rotation stage with motor; II, beam-angle sensor; III, sample platform with a removable kinematic stage; IV, rotation arm and counterweight; V, prism V-block.

Fig. 3
Fig. 3

Hilger–Chance refractometer layout with beam paths.

Fig. 4
Fig. 4

PSD readings in the x (top) and y (bottom) positions versus detector voltage for two different spots on the detector. Data were collected for multiple wavelengths spanning a wide range of powers. The dotted lines define the linear region of the detector.

Fig. 5
Fig. 5

Measurement results for distilled water at T = 23 ° C : (a) dispersion plots, (b) index difference between the Hilger–Chance and the hollow prism measurements, (c) index difference between the Hilger–Chance and the Tilton and Taylor measurements.

Fig. 6
Fig. 6

Differences between the Hilger–Chance and the hollow prism measurements for oils with indices of (a) 1.4000 and (b) 1.6000.

Tables (1)

Tables Icon

Table 1 Index Values Reduced to T = 23 ° C for Distilled Water

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 2 = n 1 2 2 + n 2 2 2 sin θ n 2 2 sin 2 θ ,
n 2 = n 1 2 2 ( γ 2 + 1 + sin 2 A ) , γ = 1 cos C ( 1 n 1 [ ( cos B + sin B ) n 2 2 sin 2 θ ( cos B sin B ) sin θ ] ) tan C ( cos A + sin A ) .
n θ = cos θ 2 n ( 2 sin 2 θ n 2 2 ) n 2 2 sin 2 θ .
θ beam = tan 1 ( r f ) .
θ = θ rot _ dev + θ beam _ dev θ rot _ undev θ beam _ undev .
ε D 2 f .
n 2 = A 0 + A 1 λ 2 + A 2 λ 2 + A 3 λ 4 +

Metrics