Abstract

GaN is a wide-bandgap semiconductor with still unexplored capabilities for ultraviolet detection. To exploit GaN properties better for ultraviolet detection, a metal–semiconductor–metal-type photodetector structure was designed and manufactured on a 2.2μm thin GaN membrane fabricated by micromachining techniques. As a result, a very low dark current (30pA at 3V) and a maximum responsivity of 14mA/W at a wavelength of 370nm were obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
    [CrossRef]
  2. E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
    [CrossRef]
  3. J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
    [CrossRef]
  4. T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
    [CrossRef]
  5. T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
    [CrossRef]
  6. R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
    [CrossRef]
  7. A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
    [CrossRef]
  8. A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
    [CrossRef]
  9. S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
    [CrossRef]

2007 (1)

R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
[CrossRef]

2006 (1)

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

2003 (2)

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
[CrossRef]

2002 (3)

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

1999 (1)

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

1998 (1)

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Adikimenakis, A.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Aifano, R. R.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Calle, F.

E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
[CrossRef]

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

Campbell, J. C.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Carrano, J. C.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Chuang, R. W.

R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
[CrossRef]

Chuang, S. J.

R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
[CrossRef]

Chuang, S. P.

R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
[CrossRef]

Clos, R.

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

Dadgar, A.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

Dascalu, D.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Dupuis, R. D.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Eiting, C. J.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Georgakilas, A.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Grudovsky, P. A.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Hartnagel, H. L.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

He, L.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Konstantinidis, G.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Kosopoulos, A.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Krost, A.

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

Li, T.

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

Markoç, H.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Monroy, E.

E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
[CrossRef]

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

Müller, A.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Munoz, F.

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

Mutamba, K.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Neculoiu, D.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Omnes, F.

E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
[CrossRef]

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

Palacios, T.

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

Shatu, I.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Strassburger, G.

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

Sydlo, C.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Tamargo, M.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Vasilache, D.

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Wang, W. B.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Yun, F.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Zhang, S. K.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Zhou, X.

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

E. Monroy, F. Calle, F. Munoz, and F. Omnes, “AlGaN metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 74, 3401-3403 (1999).
[CrossRef]

T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett. 81, 1902-1904 (2002).
[CrossRef]

S. K. Zhang, W. B. Wang, I. Shatu, F. Yun, L. He, H. Markoç, X. Zhou, M. Tamargo, and R. R. Aifano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett. 81, 4862-4864 (2002).
[CrossRef]

J. Appl. Phys. (2)

R. W. Chuang, S. P. Chuang, and S. J. Chuang, “Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates,” J. Appl. Phys. 102, 073110 (2007)
[CrossRef]

J. C. Carrano, T. Li, P. A. Grudovsky, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. 83, 6148-6160(1998)
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technology for III-nitride semiconductors,” J. Vac. Sci. Technol. B 20, 2071-2074 (2002).
[CrossRef]

Phys. Status Solidi A (1)

A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “GaN-based epitaxy on silicon: stress measurements,” Phys. Status Solidi A 200, 26-35 (2003).
[CrossRef]

Semicond. Sci. Technol. (1)

E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33-R51 (2003),
[CrossRef]

Superlattices Microstruct. (1)

A. Müller, D. Neculoiu, D. Vasilache, D. Dascalu, G. Konstantinidis, A. Kosopoulos, A. Adikimenakis, A. Georgakilas, K. Mutamba, C. Sydlo, H. L. Hartnagel, and A. Dadgar, “GaN micromachined FBAR structures for microwave applications,” Superlattices Microstruct. 40, 426-431(2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layer structure of the fabricated GaN FBAR on (111)-oriented high-resistivity Si substrate. The first AlN layer has a buffer function, while the interlayers ( 10 nm thick) are used to minimize the thermal stress and avoid cracking the GaN layers. The Fe doping allows compensation for the native doping in GaN layers.

Fig. 2
Fig. 2

Schematic cross section of the membrane MSM UV detector structure.

Fig. 3
Fig. 3

Scanning electron microscope photograph of the fabricated GaN membrane MSM UV detector structure.

Fig. 4
Fig. 4

Dark current versus applied voltage for two different photodetectors named 1 and 2, which are located on the same wafer.

Fig. 5
Fig. 5

Experimental setup for responsivity measurements.

Fig. 6
Fig. 6

Responsivities versus photon energy for top illumination for the GaN membrane-supported UV detector (dashed curve) and of UV GaN bulk photodetectors realized in the same technological run, on the same wafer, with the same height as GaN photodetectors, and not etched. The applied voltage was 1.5 V .

Metrics