Abstract

Diffractive microlens arrays with continuous relief are designed, fabricated, and characterized by using Fermat’s principle to create an array of spots on the photoresist-coated surface of a substrate for parallel laser direct writing. Experimental results indicate that a diffraction efficiency of 71.4% and a spot size of 1.97μm (FWHM) can be achieved at normal incidence and a writing laser wavelength of 441.6nm with an array of F/4 fabricated on fused silica, and the developed array can be used to improve the utilization ratio of writing laser energy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Liang, J. Hu, and Z. J. Xu, “Realization of electric control of laser direct writing mesh on concave spherical substrate,” Opt. Precis. Eng. 14, 792-796 (2006).
  2. Y. Xie, Z. Lu, and F. Li, “Fabrication of large diffractive optical elements in thick film on a concave lens surface,” Opt. Express 11, 992-995 (2003).
    [CrossRef] [PubMed]
  3. M. Haruna, M. Takahashi, K. Wakahayashi, and H. Nishihara, “Laser beam lithographed micro-Fresnel lenses,” Appl. Opt. 29, 5120-5126 (1990).
    [CrossRef] [PubMed]
  4. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
    [CrossRef]
  5. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45, 53-62 (2006).
    [CrossRef] [PubMed]
  6. H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318-4322 (1996).
    [CrossRef]
  7. R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567-571 (2006).
    [CrossRef]
  8. M. Dacidson, “A microlens direct-write concept for lithography,” Proc. SPIE 3048, 18-23 (1997).
  9. M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, “Optimization of diffraction grating profiles in fabrication by electron-beam lithography,” Appl. Opt. 43, 5137-5142 (2004).
    [CrossRef] [PubMed]
  10. Y. F. Yong-Qi, N. K. A. Bryan, and O. Shing, “Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling,” Opt. Express 7, 141-147 (2000).
    [CrossRef] [PubMed]
  11. J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
    [CrossRef]
  12. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976-983 (1989).
    [CrossRef] [PubMed]
  13. M. Rossi, R. E. Kunz, and H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996-6007 (1995).
    [CrossRef] [PubMed]
  14. T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37, 4069-4079 (1998).
    [CrossRef]
  15. T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
    [CrossRef]
  16. B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198-2202 (1997).
    [CrossRef] [PubMed]

2007 (1)

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

2006 (3)

2004 (1)

2003 (1)

2002 (1)

T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
[CrossRef]

2000 (1)

1998 (1)

1997 (2)

1996 (1)

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318-4322 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

1990 (1)

1989 (1)

Ammer, T.

T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
[CrossRef]

Bryan, N. K. A.

Buralli, D. A.

Corazza, D. J.

Dacidson, M.

M. Dacidson, “A microlens direct-write concept for lithography,” Proc. SPIE 3048, 18-23 (1997).

Gale, M. T.

T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
[CrossRef]

T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37, 4069-4079 (1998).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Gil, D.

Haruna, M.

Herzig, H. P.

Hessler, T.

Hirai, Y.

Hu, J.

F. C. Liang, J. Hu, and Z. J. Xu, “Realization of electric control of laser direct writing mesh on concave spherical substrate,” Opt. Precis. Eng. 14, 792-796 (2006).

Keyworth, B. P.

Kikuta, H.

Korolkov, V. P.

Kunz, R. E.

Li, F.

Liang, F. C.

F. C. Liang, J. Hu, and Z. J. Xu, “Realization of electric control of laser direct writing mesh on concave spherical substrate,” Opt. Precis. Eng. 14, 792-796 (2006).

Liu, J.

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Lu, Z.

Mabbott, L.

McMullin, J. N.

Menon, R.

Morris, G. M.

Nasyrov, R. K.

Nishihara, H.

Okano, M.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Rogers, J. R.

Rossi, M.

T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
[CrossRef]

T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37, 4069-4079 (1998).
[CrossRef]

M. Rossi, R. E. Kunz, and H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996-6007 (1995).
[CrossRef] [PubMed]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Shan, M. G.

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Shimansky, R. V.

Shing, O.

Smith, H. I.

R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A 23, 567-571 (2006).
[CrossRef]

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318-4322 (1996).
[CrossRef]

Takahashi, M.

Tan, J. B.

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Wakahayashi, K.

Xie, Y.

Xu, Z. J.

F. C. Liang, J. Hu, and Z. J. Xu, “Realization of electric control of laser direct writing mesh on concave spherical substrate,” Opt. Precis. Eng. 14, 792-796 (2006).

Yamamoto, K.

Yong-Qi, Y. F.

Yotsuya, T.

Zhang, H.

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Zhao, C. G.

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Appl. Opt. (7)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

H. I. Smith, “A proposal for maskless, zone-plate-array nanolithography,” J. Vac. Sci. Technol. B 14, 4318-4322 (1996).
[CrossRef]

Opt. Commun. (1)

J. B. Tan, M. G. Shan, J. Liu, H. Zhang, and C. G. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Opt. Eng. (2)

T. Ammer, M. T. Gale, and M. Rossi, “Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling,” Opt. Eng. 41, 3141-3150 (2002).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556-3566 (1994).
[CrossRef]

Opt. Express (2)

Opt. Precis. Eng. (1)

F. C. Liang, J. Hu, and Z. J. Xu, “Realization of electric control of laser direct writing mesh on concave spherical substrate,” Opt. Precis. Eng. 14, 792-796 (2006).

Proc. SPIE (1)

M. Dacidson, “A microlens direct-write concept for lithography,” Proc. SPIE 3048, 18-23 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of finite-thickness design diffractive microlenses with continuous relief.

Fig. 2
Fig. 2

Design of diffractive microlenses with continuous relief.

Fig. 3
Fig. 3

SEM photograph of diffractive microlens array with continuous relief.

Fig. 4
Fig. 4

AFM image of diffractive microlens with continuous relief.

Fig. 5
Fig. 5

Schematic of experimental setup.

Fig. 6
Fig. 6

Experimental results: (a) focal spots of array; (b) intensity profile.

Fig. 7
Fig. 7

Experimental results: (a) magnified view of one spot; (b) intensity profile.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 0 S ( r ) + ( f 0 + m p λ 0 ) = [ f 0 S ( r ) ] 2 + r 2 ,
S ( r ) = m p λ n 0 1 + c r 2 1 + 1 ( 1 + K ) c 2 r 2 , r m r r m + 1 ,
c = 1 f 0 * ( 1 n 0 ) + m p λ 0 , K = n 0 2 .
r m = 2 m p λ 0 f 0 + ( m p λ 0 ) 2 , 0 m M .

Metrics