Abstract

Infrared, spectral, directional-hemispherical reflectivity measurements of polished fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating are provided. The reflectance was measured with an estimated accuracy of 0.01 to 0.02 units and a precision of 0.005 units. All the surfaces were measured at ambient temperatures. Additionally, the chrome oxide ceramic particle surface was measured at 486K and the Pyromark 2500 at four temperatures to 877K. Polarization measurements are also provided for fused silica, Duraflect, chrome oxide ceramic particle surface, and Pyromark 2500 paint. Separate diffuse and specular reflectance components for the Duraflect and chrome oxide ceramic surfaces are included. Fresnel-based predictions for fused silica parallel and perpendicular polarized reflections are compared to measurements. It is notable that the Pyromark 2500 and chrome oxide ceramic particle surfaces exhibit a significant lack of manufacturing repeatability.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70, 2193-2217 (1999).
    [CrossRef]
  2. Reflectance rather than reflectivity is used to refer to measurements of these actual surfaces as suggested in Handbook of Optics, Vol. II (McGraw-Hill, 1995), p. 25.3.
  3. The “Hemidirectional reflectance” title will be used for both HDR and DHR measurements, equivalent by reciprocity.
  4. A description of the NIST instrumentation is given in L. M. Hanssen, “Integrating-sphere system and method for absolute transmittance, reflectance and absorptance of specular samples,” Appl. Opt. 40, 3196-3204 (2001).
    [CrossRef]
  5. H. B. Holl, “Specular reflection and characteristics of reflected light,” J. Opt. Soc. Am. 57, 683-690 (1967)
    [CrossRef]
  6. H. B. Holl, “The Reflection of Electromagnetic Radiation,” RF-TR-63-4, AD422882, U.S. Army Missile Command, Redstone Arsenal, AL, 1963, http://www.opticsinfobase.org/viewmedia.cfm?id=75455*seq=0
  7. V. M. Zolotarev, “Optical constants of amorphous SiO2 and GeO2 in the region of the valence band,” Opt. Spectrosc. 29, 66-70 (1970), http://www/astro.spbu.ru/JPDOC/PAPERS/4-zol70.html.
  8. M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
    [CrossRef]
  9. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  10. The stated resolutions are based on the Rayleigh criterion for triangular apodized (SOC100, SOC400T) and boxcar apodized (NIST) interferograms.
  11. A. Salleo, M. C. Martin, and F. Y. Genin, “Infrared microscopy of laser-driven phase transformations in fused silica,” Advanced Light Source, division of Berkeley Lab, http://www-als.lbl.gov/alls.
  12. P. Veres, “FTIR analysis of particulate matter collected on teflon filters,” Ph.D. dissertation (Ohio State University, 2007) http://www.chemistry.ohio-state.edu
  13. V. Cavagnaro, A&A Company, Inc., South Plainfield, N.J. (personal communication).
  14. Tempil, Inc., “Pyromark high temperature paint,” http://www.tempil.com.
  15. S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).
  16. S. Baker, Tempil, Inc., South Plainfield, N.J. (personal communication, 2007).
  17. R. J. Brown and B. G. Young, “Spectral emission signatures of ambient temperature objects,” Appl. Opt. 12, 2931-2934(1975).
  18. Labsphere, Inc., “Materials and coatings,” http://www.labsphere.com.

2001 (1)

1999 (1)

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70, 2193-2217 (1999).
[CrossRef]

1995 (1)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

1975 (1)

R. J. Brown and B. G. Young, “Spectral emission signatures of ambient temperature objects,” Appl. Opt. 12, 2931-2934(1975).

1970 (1)

V. M. Zolotarev, “Optical constants of amorphous SiO2 and GeO2 in the region of the valence band,” Opt. Spectrosc. 29, 66-70 (1970), http://www/astro.spbu.ru/JPDOC/PAPERS/4-zol70.html.

1967 (1)

Baker, S.

S. Baker, Tempil, Inc., South Plainfield, N.J. (personal communication, 2007).

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Brown, R. J.

R. J. Brown and B. G. Young, “Spectral emission signatures of ambient temperature objects,” Appl. Opt. 12, 2931-2934(1975).

Cavagnaro, V.

V. Cavagnaro, A&A Company, Inc., South Plainfield, N.J. (personal communication).

Genin, F. Y.

A. Salleo, M. C. Martin, and F. Y. Genin, “Infrared microscopy of laser-driven phase transformations in fused silica,” Advanced Light Source, division of Berkeley Lab, http://www-als.lbl.gov/alls.

Hanson, S. G.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

Hanssen, L. M.

Holl, H. B.

H. B. Holl, “Specular reflection and characteristics of reflected light,” J. Opt. Soc. Am. 57, 683-690 (1967)
[CrossRef]

H. B. Holl, “The Reflection of Electromagnetic Radiation,” RF-TR-63-4, AD422882, U.S. Army Missile Command, Redstone Arsenal, AL, 1963, http://www.opticsinfobase.org/viewmedia.cfm?id=75455*seq=0

Johansen, P. M.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

Lading, L.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

Lynov, J. P.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

Martin, M. C.

A. Salleo, M. C. Martin, and F. Y. Genin, “Infrared microscopy of laser-driven phase transformations in fused silica,” Advanced Light Source, division of Berkeley Lab, http://www-als.lbl.gov/alls.

Persky, M. J.

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70, 2193-2217 (1999).
[CrossRef]

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

Salleo, A.

A. Salleo, M. C. Martin, and F. Y. Genin, “Infrared microscopy of laser-driven phase transformations in fused silica,” Advanced Light Source, division of Berkeley Lab, http://www-als.lbl.gov/alls.

Skaarup, B.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

Veres, P.

P. Veres, “FTIR analysis of particulate matter collected on teflon filters,” Ph.D. dissertation (Ohio State University, 2007) http://www.chemistry.ohio-state.edu

Young, B. G.

R. J. Brown and B. G. Young, “Spectral emission signatures of ambient temperature objects,” Appl. Opt. 12, 2931-2934(1975).

Zolotarev, V. M.

V. M. Zolotarev, “Optical constants of amorphous SiO2 and GeO2 in the region of the valence band,” Opt. Spectrosc. 29, 66-70 (1970), http://www/astro.spbu.ru/JPDOC/PAPERS/4-zol70.html.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Opt. Spectrosc. (1)

V. M. Zolotarev, “Optical constants of amorphous SiO2 and GeO2 in the region of the valence band,” Opt. Spectrosc. 29, 66-70 (1970), http://www/astro.spbu.ru/JPDOC/PAPERS/4-zol70.html.

Rev. Sci. Instrum. (2)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

M. J. Persky, “Review of black surfaces for space-borne infrared systems,” Rev. Sci. Instrum. 70, 2193-2217 (1999).
[CrossRef]

Other (12)

Reflectance rather than reflectivity is used to refer to measurements of these actual surfaces as suggested in Handbook of Optics, Vol. II (McGraw-Hill, 1995), p. 25.3.

The “Hemidirectional reflectance” title will be used for both HDR and DHR measurements, equivalent by reciprocity.

Labsphere, Inc., “Materials and coatings,” http://www.labsphere.com.

H. B. Holl, “The Reflection of Electromagnetic Radiation,” RF-TR-63-4, AD422882, U.S. Army Missile Command, Redstone Arsenal, AL, 1963, http://www.opticsinfobase.org/viewmedia.cfm?id=75455*seq=0

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

The stated resolutions are based on the Rayleigh criterion for triangular apodized (SOC100, SOC400T) and boxcar apodized (NIST) interferograms.

A. Salleo, M. C. Martin, and F. Y. Genin, “Infrared microscopy of laser-driven phase transformations in fused silica,” Advanced Light Source, division of Berkeley Lab, http://www-als.lbl.gov/alls.

P. Veres, “FTIR analysis of particulate matter collected on teflon filters,” Ph.D. dissertation (Ohio State University, 2007) http://www.chemistry.ohio-state.edu

V. Cavagnaro, A&A Company, Inc., South Plainfield, N.J. (personal communication).

Tempil, Inc., “Pyromark high temperature paint,” http://www.tempil.com.

S. G. Hanson, P. M. Johansen, L. Lading, J. P. Lynov, and B. Skaarup, Optics and Fluid Dynamics Department Annual Progress Report, Riso-R-1100(EN) for 1998 (Riso National Laboratory, 1999).

S. Baker, Tempil, Inc., South Plainfield, N.J. (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual drawing of the SOC400T directional input-hemispherical output reflectometer (DHR).

Fig. 2
Fig. 2

The SOC100 reflectometer utilizes hemispherical input and directional output at user selected angles.

Fig. 3
Fig. 3

Fused silica reflectance measurements, computed for θ = 20 ° , from n and k, ambient temperature and total reflectance: (a) NIST and SOC400T unpolarized, SOC100 average polarization; (b) perpendicular polarization; (c) parallel polarization.

Fig. 4
Fig. 4

Teflon-Dupont Grade 7A, PTFE polymer, ambient temperature; total reflectance; unpolarized; SOC400T ( 21 cm 1 , 20 ° ).

Fig. 5
Fig. 5

Chrome oxide ceramic particle hemi-directional reflectance, (a) ambient temperature, total reflectance, NIST unpolarized, SOC100 average polarization; (b) ambient temperature, total reflectance, unpolarized, SOC400T ( 21 cm 1 , 20 ° .); (c) ambient temperature, average polarization, SOC100 ( 16 cm 1 ,. 20 ° ); (d) total reflectance, average polarization, SOC100 ( 16 cm 1 ,. 20 ° ); (e) and (f) total reflectance, SOC100 ( 16 cm 1 ,. 20 ° ).

Fig. 6
Fig. 6

Pyromark 2500 paint reflectance: (a) ambient temperature, unpolarized, total reflectance, SOC400T ( 21 cm 1 , 20 ° ) for Circa 2000 and 9 cm 1 , 20 ° for Circa 2007; (b)–(d), Circa 2007, total reflectance, SOC100 ( 16 cm 1 ,. 20 ° ), temperature as indicated, average polarization for (b), as indicated for (c) and (d).

Fig. 7
Fig. 7

Krylon 1602 paint reflectance: ambient temperature, total reflectance, unpolarized, SOC400T ( 21 cm 1 , 20 ° ).

Fig. 8
Fig. 8

Duraflect surface reflectance: ambient temperature, SOC100 ( 16 cm 1 ,. 20 ° ); (a) average polarization, (b) and (c) total reflectance.

Tables (1)

Tables Icon

Table 1 Indices of Refraction for Fused Silica

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R 1 = ( Q cos θ ) 2 + P 2 ( Q + cos θ ) 2 + P 2 (perpendicular plane) ,
R 2 = R 1 * ( Q - sin θ tan θ ) 2 + P 2 ( Q + sin θ tan θ ) 2 + P 2   (parallel plane),
Rave = R 1 + R 2 2 (average polarization),
P 2 = 1 2 [ n 2 + k 2 + sin 2 θ + 4 n 2 k 2 + ( n 2 k 2 sin 2 θ ) 2 ] ,
Q 2 = 1 2 [ n 2 k 2 sin 2 θ + 4 n 2 k 2 + ( n 2 k 2 sin 2 θ ) 2 ] ,

Metrics