Abstract

Image storage was investigated in a liquid-crystalline azobenzene polymer film based on circular-polarization holographic recording. An image was stored in pure polarization holograms using two orthogonal circularly polarized 532 nm beams and was reconstructed with a 633 nm beam. The polarization holograms showed high stability and a high diffraction efficiency of 31.8%. Moreover, the polarization holograms could convert arbitrary probe polarization state into circular polarization, and the diffraction efficiency was dependent on the probe polarization state, which was favorable for controlling the reconstructed images.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Huff, "Holography and holographic instruments," in Handbook of Optics, M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 23.21-23.31.
  2. M. Eich and J. Wendorff, "Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers," J. Opt. Soc. Am. B 7, 1428-1436 (1990).
    [CrossRef]
  3. P. F. Wu, X. C. Wu, L. Wang, J. R. Xu, B. S. Zou, X. Gong, and W. Huang, "Image storage based on biphotonic holography in azo/polymer system," Appl. Phys. Lett. 72, 418-420 (1998).
    [CrossRef]
  4. T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, "Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films," J. Mater. Chem. 10, 337-342 (2000).
    [CrossRef]
  5. Q. Yang, Z. Wei, Y. Zhang, G. Sun, and F. Li, "Polarized-light-controlled holographic recording in an azobenzene-doped polymer film," Appl. Phys. B 72, 855-858 (2001).
  6. A. Yavrian, K. Asatryan, T. Galstian, and M. Piche, "Real-time holographic image restoration in azo dye doped polymer films," Opt. Commun. 251, 286-291 (2005).
    [CrossRef]
  7. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, "Optically induced and erased birefringence and dichroism in azoaromatic polymers," Appl. Phys. Lett. 60, 4-5 (1992).
    [CrossRef]
  8. C. S. Wang, H. S. Fei, Y. Q. Yang, Z. Q. Wei, Y. Qiu, and Y. M. Chen, "Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer," Opt. Commun. 159, 58-62 (1999).
    [CrossRef]
  9. S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, "Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption," Adv. Mater. 12, 1202-1205 (2000).
    [CrossRef]
  10. N. Kawatsuki and E. Uchida, "Birefringent control and optical switching of copolymer liquid crystal film with azobenzene and photocrosslinkable side groups," Appl. Phys. Lett. 83, 1560-1562 (2003).
    [CrossRef]
  11. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1303 (2003).
    [CrossRef]
  12. G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, "Permanent polarization gratings in photosensitive Langmuir-Blodgett films," Appl. Phys. Lett. 77, 2106-2108 (2000).
    [CrossRef]
  13. Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, "Polarization holography with photoinduced anisotropy in bacteriorhodopsin," Opt. Eng. 41, 2803-2808 (2002).
    [CrossRef]
  14. R. Birabassov and T. V. Galstian, "Analysis of the recording and reconstruction of the polarization state of light," J. Opt. Soc. Am. B 18, 1423-1427 (2001).
    [CrossRef]
  15. P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, "A remarkably efficient azobenzene peptide for holographic information storage," J. Am. Chem. Soc. 121, 4738-4743 (1999).
    [CrossRef]
  16. B. L. Yao, Z. W. Ren, N. Menke, Y. L. Wang, Y. Zheng, M. Lei, G. F. Chen, and N. Hampp, "Polarization holographic high-density optical data storage in bacteriorhodopsin film," Appl. Opt. 44, 7344-7348 (2005).
    [CrossRef] [PubMed]
  17. T. Ikeda and O. Tsutsumi, "Optical switching and image storage by means of azobenzene liquid-crystal films," Science 268, 1873-1875 (1995).
    [CrossRef] [PubMed]
  18. N. C. R. Home, P. S. Ramanujam, and S. Hvilsted, "Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters," Appl. Opt. 35, 4622-4627 (1996).
    [CrossRef]
  19. C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, and G. Sun, "Optically controlled image storage in azobenzene liquid-crystalline polymer films," Appl. Phys. B 68, 1117-1120 (1999).
    [CrossRef]
  20. I. Zebger, M. Rutloh, U. Hoffmann, J. Stumpe, H. W. Siesler, and S. Hvilsted, "Photoorientation of a liquid-crystalline polyester with azobenzene side groups: effects of irradiation with linearly polarized red light after photochemical pretreatment," Macromolecules 36, 9373-9382 (2003).
    [CrossRef]
  21. X. Pan, C. S. Wang, H. T. Xu, C. Y. Wang, and X. Q. Zhang, "Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer," Appl. Phys. B 86, 693-697 (2007).
    [CrossRef]
  22. Y. Q. Tian, J. L. Xie, C. S. Wang, Y. Y. Zhao, and H. S. Fei, "Synthesis and investigation of photoinduced anisotropy of a series of liquid crystalline copolymers with azo groups," Polymer 40, 3835-3841 (1999).
    [CrossRef]
  23. T. Buffeteau, A. Natansohn, P. Rochon, and M. Pezolet, "Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy," Macromolecules 29, 8783-8790 (1996).
    [CrossRef]
  24. J. Minabe, K. Kawano, and Y. Nishikata, "Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers," Appl. Opt. 41, 700-706 (2002).
    [CrossRef] [PubMed]

2007 (1)

X. Pan, C. S. Wang, H. T. Xu, C. Y. Wang, and X. Q. Zhang, "Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer," Appl. Phys. B 86, 693-697 (2007).
[CrossRef]

2005 (2)

A. Yavrian, K. Asatryan, T. Galstian, and M. Piche, "Real-time holographic image restoration in azo dye doped polymer films," Opt. Commun. 251, 286-291 (2005).
[CrossRef]

B. L. Yao, Z. W. Ren, N. Menke, Y. L. Wang, Y. Zheng, M. Lei, G. F. Chen, and N. Hampp, "Polarization holographic high-density optical data storage in bacteriorhodopsin film," Appl. Opt. 44, 7344-7348 (2005).
[CrossRef] [PubMed]

2003 (3)

N. Kawatsuki and E. Uchida, "Birefringent control and optical switching of copolymer liquid crystal film with azobenzene and photocrosslinkable side groups," Appl. Phys. Lett. 83, 1560-1562 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

I. Zebger, M. Rutloh, U. Hoffmann, J. Stumpe, H. W. Siesler, and S. Hvilsted, "Photoorientation of a liquid-crystalline polyester with azobenzene side groups: effects of irradiation with linearly polarized red light after photochemical pretreatment," Macromolecules 36, 9373-9382 (2003).
[CrossRef]

2002 (2)

J. Minabe, K. Kawano, and Y. Nishikata, "Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers," Appl. Opt. 41, 700-706 (2002).
[CrossRef] [PubMed]

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, "Polarization holography with photoinduced anisotropy in bacteriorhodopsin," Opt. Eng. 41, 2803-2808 (2002).
[CrossRef]

2001 (2)

R. Birabassov and T. V. Galstian, "Analysis of the recording and reconstruction of the polarization state of light," J. Opt. Soc. Am. B 18, 1423-1427 (2001).
[CrossRef]

Q. Yang, Z. Wei, Y. Zhang, G. Sun, and F. Li, "Polarized-light-controlled holographic recording in an azobenzene-doped polymer film," Appl. Phys. B 72, 855-858 (2001).

2000 (3)

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, "Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films," J. Mater. Chem. 10, 337-342 (2000).
[CrossRef]

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, "Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption," Adv. Mater. 12, 1202-1205 (2000).
[CrossRef]

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, "Permanent polarization gratings in photosensitive Langmuir-Blodgett films," Appl. Phys. Lett. 77, 2106-2108 (2000).
[CrossRef]

1999 (4)

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, "A remarkably efficient azobenzene peptide for holographic information storage," J. Am. Chem. Soc. 121, 4738-4743 (1999).
[CrossRef]

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, and G. Sun, "Optically controlled image storage in azobenzene liquid-crystalline polymer films," Appl. Phys. B 68, 1117-1120 (1999).
[CrossRef]

C. S. Wang, H. S. Fei, Y. Q. Yang, Z. Q. Wei, Y. Qiu, and Y. M. Chen, "Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer," Opt. Commun. 159, 58-62 (1999).
[CrossRef]

Y. Q. Tian, J. L. Xie, C. S. Wang, Y. Y. Zhao, and H. S. Fei, "Synthesis and investigation of photoinduced anisotropy of a series of liquid crystalline copolymers with azo groups," Polymer 40, 3835-3841 (1999).
[CrossRef]

1998 (1)

P. F. Wu, X. C. Wu, L. Wang, J. R. Xu, B. S. Zou, X. Gong, and W. Huang, "Image storage based on biphotonic holography in azo/polymer system," Appl. Phys. Lett. 72, 418-420 (1998).
[CrossRef]

1996 (2)

N. C. R. Home, P. S. Ramanujam, and S. Hvilsted, "Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters," Appl. Opt. 35, 4622-4627 (1996).
[CrossRef]

T. Buffeteau, A. Natansohn, P. Rochon, and M. Pezolet, "Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy," Macromolecules 29, 8783-8790 (1996).
[CrossRef]

1995 (1)

T. Ikeda and O. Tsutsumi, "Optical switching and image storage by means of azobenzene liquid-crystal films," Science 268, 1873-1875 (1995).
[CrossRef] [PubMed]

1992 (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, "Optically induced and erased birefringence and dichroism in azoaromatic polymers," Appl. Phys. Lett. 60, 4-5 (1992).
[CrossRef]

1990 (1)

Adv. Mater. (1)

S. P. Bian, J. A. He, L. Li, J. Kumar, and S. K. Tripathy, "Large photoinduced birefringence in azo dye/polyion films assembled by electrostatic sequential adsorption," Adv. Mater. 12, 1202-1205 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

C. Wang, H. Fei, J. Xia, Y. Yang, Z. Wei, Q. Yang, and G. Sun, "Optically controlled image storage in azobenzene liquid-crystalline polymer films," Appl. Phys. B 68, 1117-1120 (1999).
[CrossRef]

X. Pan, C. S. Wang, H. T. Xu, C. Y. Wang, and X. Q. Zhang, "Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer," Appl. Phys. B 86, 693-697 (2007).
[CrossRef]

Q. Yang, Z. Wei, Y. Zhang, G. Sun, and F. Li, "Polarized-light-controlled holographic recording in an azobenzene-doped polymer film," Appl. Phys. B 72, 855-858 (2001).

Appl. Phys. Lett. (4)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, "Optically induced and erased birefringence and dichroism in azoaromatic polymers," Appl. Phys. Lett. 60, 4-5 (1992).
[CrossRef]

P. F. Wu, X. C. Wu, L. Wang, J. R. Xu, B. S. Zou, X. Gong, and W. Huang, "Image storage based on biphotonic holography in azo/polymer system," Appl. Phys. Lett. 72, 418-420 (1998).
[CrossRef]

N. Kawatsuki and E. Uchida, "Birefringent control and optical switching of copolymer liquid crystal film with azobenzene and photocrosslinkable side groups," Appl. Phys. Lett. 83, 1560-1562 (2003).
[CrossRef]

G. Cipparrone, A. Mazzulla, S. P. Palto, S. G. Yudin, and L. M. Blinov, "Permanent polarization gratings in photosensitive Langmuir-Blodgett films," Appl. Phys. Lett. 77, 2106-2108 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, "A remarkably efficient azobenzene peptide for holographic information storage," J. Am. Chem. Soc. 121, 4738-4743 (1999).
[CrossRef]

J. Appl. Phys. (1)

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

J. Mater. Chem. (1)

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, "Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films," J. Mater. Chem. 10, 337-342 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Macromolecules (2)

I. Zebger, M. Rutloh, U. Hoffmann, J. Stumpe, H. W. Siesler, and S. Hvilsted, "Photoorientation of a liquid-crystalline polyester with azobenzene side groups: effects of irradiation with linearly polarized red light after photochemical pretreatment," Macromolecules 36, 9373-9382 (2003).
[CrossRef]

T. Buffeteau, A. Natansohn, P. Rochon, and M. Pezolet, "Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy," Macromolecules 29, 8783-8790 (1996).
[CrossRef]

Opt. Commun. (2)

C. S. Wang, H. S. Fei, Y. Q. Yang, Z. Q. Wei, Y. Qiu, and Y. M. Chen, "Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer," Opt. Commun. 159, 58-62 (1999).
[CrossRef]

A. Yavrian, K. Asatryan, T. Galstian, and M. Piche, "Real-time holographic image restoration in azo dye doped polymer films," Opt. Commun. 251, 286-291 (2005).
[CrossRef]

Opt. Eng. (1)

Y. Okada-Shudo, J. M. Jonathan, and G. Roosen, "Polarization holography with photoinduced anisotropy in bacteriorhodopsin," Opt. Eng. 41, 2803-2808 (2002).
[CrossRef]

Polymer (1)

Y. Q. Tian, J. L. Xie, C. S. Wang, Y. Y. Zhao, and H. S. Fei, "Synthesis and investigation of photoinduced anisotropy of a series of liquid crystalline copolymers with azo groups," Polymer 40, 3835-3841 (1999).
[CrossRef]

Science (1)

T. Ikeda and O. Tsutsumi, "Optical switching and image storage by means of azobenzene liquid-crystal films," Science 268, 1873-1875 (1995).
[CrossRef] [PubMed]

Other (1)

L. Huff, "Holography and holographic instruments," in Handbook of Optics, M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 23.21-23.31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Molecular structure of the copolymer.

Fig. 2
Fig. 2

Experimental setup for circular-polarization holographic recording. W 1 and W 2 are right- and left-hand circularly polarized waves, respectively. P, polarizer; BS, beam splitter; M, mirror; λ / 4 , quarter-wave plate.

Fig. 3
Fig. 3

Polarization modulation of a light field in recording with two waves with orthogonal (right- and left-hand) circular polarizations.

Fig. 4
Fig. 4

Real-time behavior of the +first-order diffraction efficiency for a right-hand circularly polarized probe light. The moments of switching the writing light on and off are marked with arrows.

Fig. 5
Fig. 5

Summary of the polarization conversions of the polarization grating for ±first-order diffracted beams and the corresponding diffraction efficiencies.

Fig. 6
Fig. 6

Dependence of the diffraction efficiency η ± 1 on the probe polarization state, with β the angle between the extraordinary axis of quarter-wave plate and the vertical direction. The experimental data are marked with symbols, while the solid curves were calculated following formula (13), using Δ n = 1.20 × 10 2 .

Fig. 7
Fig. 7

Read out of the stored image with different probe polarization state: (a) right-hand circular polarization; (b) linearly s polarization; (c) left-hand circular polarization.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E = [ E cos ( δ / 2 ) E sin ( δ / 2 ) ] ,
T ± 1 = sin Δ φ 2 i exp ( ± i δ ) 2 [ i ± 1 ± 1 i ] ,
R = ( cos α sin α ) ,
E ± 1 = sin Δ φ 2 i exp ( ± i δ ) 2 ( ± sin α + i cos α ± cos α i sin α ) .
η ± 1 ( L P ) = 1 2 sin 2 Δ φ 2 .
R = 1 2 ( 1 i ) ,
E + 1 = sin Δ φ 2 i exp ( ± i δ ) 2 ( i 1 ) ,
E 1 = 0.
η + 1 ( RCP ) = sin 2 ( Δ φ / 2 ) ,
η 1 ( RCP ) = 0.
R = ( cos 2 β i sin 2 β sin β cos β ( 1 + i ) ) ,
E ± 1 = sin Δ φ 2 i exp ( ± i δ ) 2 × ( ( sin 2 β ± sin β cos β ) + i ( cos 2 β ± sin β cos β ) ( sin β cos β ± cos 2 β ) i ( sin 2 β ± sin β cos β ) ) .
η ± 1 = 1 2 sin 2 Δ φ 2 ( sin β ± cos β ) 2 .

Metrics