Abstract

We demonstrate the ability to generate ultra-high-frequency sequences of broadly wavelength-tunable, high-intensity laser pulses using a custom-built optical parametric oscillator pumped by the third-harmonic output of a “burst-mode” Nd:YAG laser. Burst sequences consisting of 6–10 pulses separated in time by 610  μs are obtained, with average total conversion efficiency from the 355   nm pump to the near-IR signal and idler wavelengths of 33%. Typical individual pulse output energy for the signal and idler beams is in the range of 46   mJ, limited by the available pump energy. Line narrowing is demonstrated by means of injection seeding the idler wave using a low-power external-cavity diode laser at 827   nm. It is shown that seeding reduces the time-averaged linewidth of both the signal and idler outputs to 300   MHz, which is near the 220   MHz Fourier transform limit. Line narrowing is achieved without recourse to active cavity stabilization.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, "Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics," Appl. Opt. 43, 5064-5073 (2004).
    [Crossref] [PubMed]
  2. P. Wu, W. R. Lempert, and R. B. Miles, "MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel," AIAA J. 38, 672-679 (2000).
    [Crossref]
  3. K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  4. P. M. Danehy, J. A. Wilkes, D. W. Alderfer, S. B. Jones, A. W. Robbins, D. P. Patry, and R. J. Schwartz, "Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel," presented at the 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, Calif., 5-8 June 2006, paper AIAA-2006-3442.
  5. P. M. Danehy, S. O'Byrne, A. F. P. Houwing, J. S. Fox, and D. R. Smith, "Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide," AIAA J. 41, 263-271 (2003).
    [Crossref]
  6. P. Wu, W. R. Lempert, and R. B. Miles, "Tunable pulse-burst laser system for high-speed imaging diagnostics," presented at the 36th AIAA Aerospace Sciences Meeting, Reno, Nev., 12-15 January 1998, paper AIAA-98-0310.
  7. J. D. Luff, D. K. Mansfield, S. H. Zaidi, H. Aschoff, J. W. Kuper, and R. B. Miles, "Development of a tunable megahertz pulseburst alexandrite laser system," presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23-26 June 2003, paper AIAA-2003-3746.
  8. C. F. Kaminski, J. Hult, and M. Alden, "High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame," Appl. Phys. B 68, 757-760 (1999).
    [Crossref]
  9. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, 1992).
  10. J. E. Bjorkhom and H. G. Danielmeyer, "Frequency control of a pulsed nanosecond optical parametric oscillators by radiation injection," Appl. Phys. Lett. 15, 171-173 (1969).
    [Crossref]
  11. D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, "High power injection seeded optical parametric oscillator," Opt. Commun. 86, 294-300 (1991).
    [Crossref]
  12. J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, "An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical," J. Chem. Phys. 115, 6920-6930 (2001).
    [Crossref]
  13. A. Y. Dergachev, B. Pati, and P. F. Moulton, "Efficient third-harmonic generation with a Ti:sapphire laser," in Advanced Solid State Lasers, M.Fejer, H.Injeyan, and U.Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper PD3.
  14. C. K. Ni and A. H. Kung, "Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation," Opt. Lett. 21, 1673-1675 (1996).
    [Crossref] [PubMed]
  15. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, "Parametric amplification and oscillation with walkoff-compensating crystals," J. Opt. Soc. Am. B 14, 460-474 (1997).
    [Crossref]
  16. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, "High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator," Appl. Phys. Lett. 55, 1952-1954 (1989).
    [Crossref]
  17. W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, "Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy," Appl. Phys. B 80, 669-680 (2005).
    [Crossref]
  18. W. Lee and W. Lempert, "Enhancement of spectral purity of injection-seeded titanium:sapphire laser by cavity locking and stimulated Brillouin scattering," Appl. Opt. 42, 4320-4326 (2003).
    [Crossref] [PubMed]
  19. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).
  20. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, "Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror," Appl. Opt. 36, 3739-3744 (1997).
    [Crossref] [PubMed]
  21. A. L. Gaeta and R. W. Boyd, "Stochastic dynamics of stimulated Brillouin scattering in an optical fiber," Phys. Rev. A 44, 3205-3209 (1991).
    [Crossref] [PubMed]
  22. W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge U. Press, 2004).

2005 (1)

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, "Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy," Appl. Phys. B 80, 669-680 (2005).
[Crossref]

2004 (1)

2003 (2)

W. Lee and W. Lempert, "Enhancement of spectral purity of injection-seeded titanium:sapphire laser by cavity locking and stimulated Brillouin scattering," Appl. Opt. 42, 4320-4326 (2003).
[Crossref] [PubMed]

P. M. Danehy, S. O'Byrne, A. F. P. Houwing, J. S. Fox, and D. R. Smith, "Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide," AIAA J. 41, 263-271 (2003).
[Crossref]

2001 (1)

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, "An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical," J. Chem. Phys. 115, 6920-6930 (2001).
[Crossref]

2000 (1)

P. Wu, W. R. Lempert, and R. B. Miles, "MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel," AIAA J. 38, 672-679 (2000).
[Crossref]

1999 (1)

C. F. Kaminski, J. Hult, and M. Alden, "High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame," Appl. Phys. B 68, 757-760 (1999).
[Crossref]

1997 (2)

1996 (1)

1991 (2)

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, "High power injection seeded optical parametric oscillator," Opt. Commun. 86, 294-300 (1991).
[Crossref]

A. L. Gaeta and R. W. Boyd, "Stochastic dynamics of stimulated Brillouin scattering in an optical fiber," Phys. Rev. A 44, 3205-3209 (1991).
[Crossref] [PubMed]

1989 (1)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, "High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator," Appl. Phys. Lett. 55, 1952-1954 (1989).
[Crossref]

1969 (1)

J. E. Bjorkhom and H. G. Danielmeyer, "Frequency control of a pulsed nanosecond optical parametric oscillators by radiation injection," Appl. Phys. Lett. 15, 171-173 (1969).
[Crossref]

AIAA J. (2)

P. Wu, W. R. Lempert, and R. B. Miles, "MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel," AIAA J. 38, 672-679 (2000).
[Crossref]

P. M. Danehy, S. O'Byrne, A. F. P. Houwing, J. S. Fox, and D. R. Smith, "Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide," AIAA J. 41, 263-271 (2003).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, "Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy," Appl. Phys. B 80, 669-680 (2005).
[Crossref]

C. F. Kaminski, J. Hult, and M. Alden, "High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame," Appl. Phys. B 68, 757-760 (1999).
[Crossref]

Appl. Phys. Lett. (2)

J. E. Bjorkhom and H. G. Danielmeyer, "Frequency control of a pulsed nanosecond optical parametric oscillators by radiation injection," Appl. Phys. Lett. 15, 171-173 (1969).
[Crossref]

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, "High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator," Appl. Phys. Lett. 55, 1952-1954 (1989).
[Crossref]

J. Chem. Phys. (1)

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, "An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical," J. Chem. Phys. 115, 6920-6930 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, "High power injection seeded optical parametric oscillator," Opt. Commun. 86, 294-300 (1991).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

A. L. Gaeta and R. W. Boyd, "Stochastic dynamics of stimulated Brillouin scattering in an optical fiber," Phys. Rev. A 44, 3205-3209 (1991).
[Crossref] [PubMed]

Other (8)

W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge U. Press, 2004).

A. Y. Dergachev, B. Pati, and P. F. Moulton, "Efficient third-harmonic generation with a Ti:sapphire laser," in Advanced Solid State Lasers, M.Fejer, H.Injeyan, and U.Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper PD3.

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, 1992).

P. Wu, W. R. Lempert, and R. B. Miles, "Tunable pulse-burst laser system for high-speed imaging diagnostics," presented at the 36th AIAA Aerospace Sciences Meeting, Reno, Nev., 12-15 January 1998, paper AIAA-98-0310.

J. D. Luff, D. K. Mansfield, S. H. Zaidi, H. Aschoff, J. W. Kuper, and R. B. Miles, "Development of a tunable megahertz pulseburst alexandrite laser system," presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23-26 June 2003, paper AIAA-2003-3746.

K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

P. M. Danehy, J. A. Wilkes, D. W. Alderfer, S. B. Jones, A. W. Robbins, D. P. Patry, and R. J. Schwartz, "Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel," presented at the 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, Calif., 5-8 June 2006, paper AIAA-2006-3442.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the injection-seeded burst-mode OPO cavity.

Fig. 2
Fig. 2

Small-signal gain versus pump energy with approximate error bars as indicated.

Fig. 3
Fig. 3

OPO conversion efficiency as a function of pump energy for single 355   nm pulses from the burst-mode laser with approximate error bars as indicated.

Fig. 4
Fig. 4

Typical six-pulse, 10   μs spacing pump (upper) and OPO burst sequence (lower). Total OPO conversion efficiency (signal + idler) is 33%. Average single-pulse 355   nm input energy is 31   mJ .

Fig. 5
Fig. 5

Typical ten-pulse, 6   μs spacing pump (upper) and OPO burst sequences (lower). Total OPO conversion efficiency (signal + idler) is 32%. Average single-pulse 355   nm input energy is 16   mJ .

Fig. 6
Fig. 6

Etalon trace of second-harmonic ( 532   nm ) output of burst-mode laser before (solid) and after (dashed) the PCM.

Fig. 7
Fig. 7

Time traces of pump (solid), seeded (circles), and unseeded (crosses) OPO output illustrating build-up time delay. Upper and lower traces correspond to 827   nm idler and 622   nm signal wavelengths, respectively. Seeding is at the idler wavelength.

Fig. 8
Fig. 8

Dual wedge Fizeau wavemeter interference patterns for single OPO signal pulse when cavity is seeded at the idler wavelength with a cw ECDL. Upper and lower traces correspond to low and high resolution Fizeau wedge, respectively. Idler pulse output is essentially identical.

Fig. 9
Fig. 9

Airy function (solid) for OPO cavity used in this work, illustrating minimum transmission of 15%. Symbols correspond to Eq. (3), truncated at n = 4 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = 1 4 exp ( 2 l 8 π 2 d eff 2 I p λ s λ i n s n i n p ε 0 c ) ,
Δ v FWHM Δ t FWHM = 4 ln ( 2 ) / π 0.88 .
E t = E o t 2 n = 0 r 2 n e in ϕ ,

Metrics