Abstract

We describe chalcogenide glass and polymer based Bragg reflectors with a metallic underlayer and use a transfer matrix model to analyze their performance. The angle-averaged reflectance of a hybrid mirror approaches unity for only a few periods and is much higher than that for a nonmetallized Bragg reflector or for the metallic layer alone. For an angle-averaged reflectance greater than 0.99, the addition of a metallic underlayer enables nearly a tripling of the omnidirectional bandwidth (from 110 to 305  nm) concurrent with a significant reduction in the number of required periods (from 10.5 to 4.5). Hybrid mirrors of 4.5 periods, with a 50  nm Au underlayer and overall thickness of 2  μm, were fabricated atop silicon substrates and characterized. They exhibit an omnidirectional stop band in the 14501750  nm wavelength range, in good agreement with theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  2. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999).
    [CrossRef]
  3. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004).
    [CrossRef] [PubMed]
  4. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, and J. Rivory, "Making an omnidirectional reflector," Appl. Opt. 40, 5056-5063 (2001).
    [CrossRef]
  5. H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm," Appl. Phys. Lett. 81, 4502-4504 (2002).
    [CrossRef]
  6. K. M. Chen, A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett. 75, 3805-3807 (1999).
    [CrossRef]
  7. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector,"Opt. Lett. 26, 1197-1199 (2001).
    [CrossRef]
  8. W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
    [CrossRef]
  9. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005).
    [CrossRef] [PubMed]
  10. T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
    [CrossRef] [PubMed]
  11. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
    [CrossRef]
  12. S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004).
    [CrossRef] [PubMed]
  13. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
    [CrossRef]
  14. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004).
    [CrossRef] [PubMed]
  15. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express 15, 3902-3915 (2007).
    [CrossRef] [PubMed]
  16. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Modal analysis of Bragg onion resonators," Opt. Lett. 29, 424-426 (2004).
    [CrossRef] [PubMed]
  17. P. Baumeister, "Dependence of the reflectance of a multilayer reflector on the thickness of the outer layer," Appl. Opt. 38, 6034-6035 (1999).
    [CrossRef]
  18. F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn. , Part 2: Electron. 29, 9-19 (2006).
  19. Y. Xu, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003).
    [CrossRef] [PubMed]
  20. M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
    [CrossRef]
  21. H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
    [CrossRef]
  22. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  23. T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
    [CrossRef]
  24. J.-Q. Xi, M. Ojha, W. Cho, T. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electron. Syst. 14, 726-731 (2004).
    [CrossRef]
  25. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  26. A. Knoesen and L.-M. Wu, "Absorption of polymers for optical waveguide applications measured by photothermal deflection spectroscopy," Proc. SPIE 4461, 146-148 (2001).
    [CrossRef]
  27. Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, and H. Uyama, "Refractive indices and extinction coefficients of polymers for the mid-infrared region," Appl. Opt. 37, 7091-7095 (1998).
    [CrossRef]
  28. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, "Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fibers," J. Polym. Sci., Part B: Polym. Phys. 30, 879-885 (1992).
    [CrossRef]
  29. "Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AIlowbar10lowbarAPPlowbarSAP.pdf.
  30. O. Arnon, "Loss mechanisms in dielectric optical interference devices," Appl. Opt. 16, 2147-2151 (1977).
    [CrossRef] [PubMed]
  31. "AMTIR-1," (Amorphous Materials Inc.), http://www.amorphousmaterials.com/Amtir-1.htm.
  32. D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, "Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides," Appl. Phys. Lett. 91, 011115 (2007).
    [CrossRef]
  33. D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorption of quarter-wave dielectric mirrors," IEEE J. Quantum Electron. 28, 514-524 (1992).
    [CrossRef]
  34. A. G. Barriuso, J. J. Manzón, L. L. Sánchez-Soto, and Á. Felipe, "Integral merit function for broadband omnidirectional mirrors," Appl. Opt. 46, 2903-2906 (2007).
    [CrossRef] [PubMed]

2007 (4)

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
[CrossRef]

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express 15, 3902-3915 (2007).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, "Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides," Appl. Phys. Lett. 91, 011115 (2007).
[CrossRef]

A. G. Barriuso, J. J. Manzón, L. L. Sánchez-Soto, and Á. Felipe, "Integral merit function for broadband omnidirectional mirrors," Appl. Opt. 46, 2903-2906 (2007).
[CrossRef] [PubMed]

2006 (3)

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn. , Part 2: Electron. 29, 9-19 (2006).

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005).
[CrossRef] [PubMed]

2004 (6)

2003 (1)

2002 (2)

T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
[CrossRef]

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm," Appl. Phys. Lett. 81, 4502-4504 (2002).
[CrossRef]

2001 (3)

1999 (3)

1998 (3)

1997 (1)

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

1992 (2)

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, "Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fibers," J. Polym. Sci., Part B: Polym. Phys. 30, 879-885 (1992).
[CrossRef]

D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorption of quarter-wave dielectric mirrors," IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

1977 (1)

Adv. Mater. (1)

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, "Robust and flexible free-standing all-dielectric omnidirectional reflectors," Adv. Mater. 19, 193-196 (2007).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (3)

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm," Appl. Phys. Lett. 81, 4502-4504 (2002).
[CrossRef]

K. M. Chen, A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett. 75, 3805-3807 (1999).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, "Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides," Appl. Phys. Lett. 91, 011115 (2007).
[CrossRef]

Electron. Commun. Jpn. (1)

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn. , Part 2: Electron. 29, 9-19 (2006).

Electron. Lett. (1)

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorption of quarter-wave dielectric mirrors," IEEE J. Quantum Electron. 28, 514-524 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

J.-Q. Xi, M. Ojha, W. Cho, T. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electron. Syst. 14, 726-731 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005).
[CrossRef]

J. Polym. Sci., Part B: Polym. Phys. (1)

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, "Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fibers," J. Polym. Sci., Part B: Polym. Phys. 30, 879-885 (1992).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (1)

A. Knoesen and L.-M. Wu, "Absorption of polymers for optical waveguide applications measured by photothermal deflection spectroscopy," Proc. SPIE 4461, 146-148 (2001).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Other (3)

"Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AIlowbar10lowbarAPPlowbarSAP.pdf.

"AMTIR-1," (Amorphous Materials Inc.), http://www.amorphousmaterials.com/Amtir-1.htm.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Schematic cross section of a hybrid ODR is shown. The glass, polymer, and metal layers are described in detail in the text. Without the metal layer and assuming sufficient index contrast between the glass and polymer layers, the mirror is a standard (all-dielectric) ODR.

Fig. 2
Fig. 2

(Color online) Estimated extinction coefficient of PAI is plotted in the vicinity of the omnidirectional reflection band of the mirrors described. The extinction coefficient was extracted from a spectrophotometer transmission scan on a relatively thick ( 100   µm ) PAI layer (blue solid curve) and from cutback measurements on highly confining PAI-based waveguides (red dotted curve).

Fig. 3
Fig. 3

(Color online) Predicted reflectance for TM- (left column) and TE- (right column) polarized light, at the incident angles indicated, for a 4.5 period dielectric mirror (green dotted curve), a 50   nm Au mirror (blue dashed curve), and a hybrid mirror of 4.5 periods overtop 50   nm of Au (red solid curve).

Fig. 4
Fig. 4

(Color online) Predicted reflectance at 1600   nm wavelength versus angle of incidence for TM- (upper plot) and TE- (lower plot) polarized light, for the 4.5 period dielectric mirror (green dotted line), the metal mirror (blue dashed curve), and the hybrid mirror (red solid curve).

Fig. 5
Fig. 5

(Color online) Predicted reflectance of a hybrid mirror (with 50   nm Au underlayer) at 1600   nm wavelength is plotted versus angle of incidence. The red solid curve corresponds to a 4 period, lossless mirror ended with a high index layer. The red dashed curve corresponds to the same 4 period mirror, but with finite loss ( κ PAI = 10 4 ) for the low index layers. The blue dotted–dashed curve corresponds to a 4.5 period, lossless mirror ended with a low index layer. The blue dotted curve corresponds to the same 4.5 period mirror, but with κ PAI = 10 4 .

Fig. 6
Fig. 6

(Color online) Plots of angle-averaged reflectance (R AVG) at λ = 1600   nm versus number of bilayers are shown for the dielectric mirror (green dotted curve) and the hybrid mirror with 50   nm Au underlayer (red solid curve). In each plot, the horizontal dashed curve indicates the angle-averaged reflectance of a 50   nm Au mirror.

Fig. 7
Fig. 7

(Color online) Reflectance is plotted versus wavelength for a 10.5 period dielectric mirror (green dotted curve) and a 4.5 period hybrid mirror with 50   nm Au underlayer (red solid curve), for both polarization states and various angles of incidence.

Fig. 8
Fig. 8

(Color online) Angle-averaged reflectance is plotted versus wavelength for a 10.5 period dielectric mirror (green dotted curve) and a 4.5 period hybrid mirror with 50   nm Au underlayer (red solid curve). In the TE case, the peak angle-averaged reflectance is slightly higher for the dielectric mirror ( 0.999 ) than for the hybrid mirror ( 0.998 ) .

Fig. 9
Fig. 9

(Color online) Angle-averaged reflectance versus wavelength for TM-polarized light incident on a 10.5 period dielectric mirror (green dotted curve) and a 4.5 period hybrid mirror with 50   nm Au underlayer (red solid curve). Using a 99% angle-averaged reflectance criterion, the omnidirectional bandwidth of the dielectric mirror is 110   nm ( 1510 1620   nm ) , while that of the hybrid mirror is 305   nm ( 1450 1755   nm ) .

Fig. 10
Fig. 10

(Color online) Experimental (red solid curves) and theoretical (blue dashed curves) reflectance of a 4.5 period hybrid mirror (ended by a PAI layer) are plotted versus wavelength for various incident angles (15°, 30°, 45°, and 60°). For the transfer matrix simulation, the IG2, PAI, and Au layer thicknesses were set to 150, 290, and 45   nm , respectively.

Fig. 11
Fig. 11

(Color online) Experimental (red solid curves) and theoretical (blue dashed curves) reflectance of a 5 period hybrid mirror (ended by an IG2 layer) are plotted versus wavelength for various incident angles (15°, 30°, 45°, and 60°). For transfer matrix simulation, the IG2, PAI, and Au layer thicknesses were set to 135, 290, and 40   nm , respectively.

Fig. 12
Fig. 12

(Color online) Theoretical (blue dashed curves) and experimental (red solid curves) reflectance is plotted for an incident angle of ∼60°. The top row of plots is for the 5 period mirror ended by an IG2 layer, and the bottom row of plots is for the 4.5 period mirror ended by a PAI layer. The theoretical curves were obtained under the assumption of lossless dielectric layers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

VL 2 π n 0 κ H + κ L n H 2 n L 2 ,
VL 2 π n 0 ( n L 2 κ H + n H 2 κ L ) ( n H 2 n L 2 ) .
SSL 8 π 2 n 0 n L T H L ( n H 2 n L 2 ) ( σ λ 0 ) 2 ,
R AVG ( λ ) = 2 π 0 π / 2 R ( θ , λ ) d θ ,

Metrics