Abstract

In a distributed Brillouin sensor system, it is crucial to keep the pulse energy uniform for a constant signal-to-noise ratio. This means that the variable dc leakage (pulse base) for the electro-optic modulator (EOM) must be locked. We examine two different methods of locking the EOM bias voltage and look at the advantages and disadvantages of each locking method. It is found that the two locking methods, one based on a lock-in amplifier and the other using proportional-integral-derivative control, both have applications in which they excel at locking the pulse base.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
    [CrossRef]
  2. S. AfsharV., G. A. Ferrier, X. Bao, and L. Chen, "Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems," Opt. Lett. 28, 1418-1420 (2003).
    [CrossRef]
  3. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (1999).
    [CrossRef]
  4. H. Naruse and M. Tateda, "Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber," Appl. Opt. 38, 6516-6521 (1999).
    [CrossRef]
  5. D. A. Humphreys, "Integrated-optic system for high-speed photodetector bandwidth measurements," Electron. Lett. 25, 1555-1557 (1989).
    [CrossRef]
  6. T. Kurashima, T. Horiguchi, and M. Tateda, "Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers," Appl. Opt. 29, 2219-2222 (1990).
    [CrossRef] [PubMed]
  7. G. L. Li and P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightwave Technol. 21, 2010-2030 (2003).
    [CrossRef]
  8. R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
    [CrossRef]
  9. M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter Peregrinus Ltd, 1983).
  10. K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. (Instrument Society of America, 1995).
  11. L. Zou, X. Bao, Y. Wan, and L. Chen, "Coherent probe-pump-based Brillouin sensor for centimeter-crack detection," Opt. Lett. 30, 370-372 (2005).
    [CrossRef] [PubMed]

2005 (1)

2003 (2)

1999 (2)

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

1990 (2)

T. Kurashima, T. Horiguchi, and M. Tateda, "Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers," Appl. Opt. 29, 2219-2222 (1990).
[CrossRef] [PubMed]

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

1989 (1)

D. A. Humphreys, "Integrated-optic system for high-speed photodetector bandwidth measurements," Electron. Lett. 25, 1555-1557 (1989).
[CrossRef]

Astrom, K.

K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. (Instrument Society of America, 1995).

Bao, X.

Bray, R. C.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Chen, L.

Conrad, G.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Cropper, D.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

Ferrier, G. A.

Hagglund, T.

K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. (Instrument Society of America, 1995).

Hernday, P.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

Horiguchi, T.

Humphreys, D. A.

D. A. Humphreys, "Integrated-optic system for high-speed photodetector bandwidth measurements," Electron. Lett. 25, 1555-1557 (1989).
[CrossRef]

Jackson, D. A.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (1999).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

Johnsen, C.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Jungerman, R. L.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Kurashima, T.

Lecoeuche, V.

Li, G. L.

McQuate, D. J.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Meade, M. L.

M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter Peregrinus Ltd, 1983).

Naruse, H.

Pannell, C. N.

Salomaa, K.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Tateda, M.

V., S. Afshar

Wan, Y.

Webb, D. J.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (1999).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

Yu, P. K. L.

Zou, L.

Zurakowski, M. P.

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

D. A. Humphreys, "Integrated-optic system for high-speed photodetector bandwidth measurements," Electron. Lett. 25, 1555-1557 (1989).
[CrossRef]

J. Lightwave Technol. (3)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," J. Lightwave Technol. 13, 1340-1348 (1995).
[CrossRef]

G. L. Li and P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightwave Technol. 21, 2010-2030 (2003).
[CrossRef]

R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zurakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, "High-speed optical modulator for application in instrumentation," J. Lightwave Technol. 8, 1363-1370 (1990).
[CrossRef]

Opt. Lett. (3)

Other (2)

M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter Peregrinus Ltd, 1983).

K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. (Instrument Society of America, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Brillouin sensor system setup.

Fig. 2
Fig. 2

Mach–Zehnder electro-optic modulator.

Fig. 3
Fig. 3

EOM transfer curve.

Fig. 4
Fig. 4

Locking to minimum of EOM transfer curve.

Fig. 5
Fig. 5

System diagram for lock-in amplifier method of bias locking.

Fig. 6
Fig. 6

Experimental results of lock-in amplifier method with 100   mV modulation.

Fig. 7
Fig. 7

Experimental results of lock-in amplifier method with 268   mV modulation.

Fig. 8
Fig. 8

System diagram for PID method for bias locking.

Fig. 9
Fig. 9

Experimental results of PID method.

Metrics