Abstract

Evanescent coupling between two parallel nanowires is investigated using the finite-difference time-domain method. Silica, tellurite, and silicon nanowires are used as typical materials in the simulation. Compared with weakly coupled waveguides, strongly coupled nanowires show much smaller transfer lengths without sacrificing high coupling efficiencies, suggesting possibilities for developing highly compact evanescent-coupling-based nanowire photonic devices, as well as for achieving high-efficiency interconnection between nanowires and external optical systems. Meanwhile, the polarization-dependent coupling properties, the considerably high minimum coupling efficiency, and the supermode-cutoff-like behavior are also observed. Evanescent coupling properties of strongly coupled nanowires demonstrated may provide valuable references for practical applications of optical nanowires.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Photonic Devices and Systems (Marcel Dekker, 1994).
  2. J. H. Franz and V. K. Jain, Optical Communications Components and Systems (Narosa Publishing House, 2000).
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  4. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
    [CrossRef] [PubMed]
  5. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
    [CrossRef] [PubMed]
  6. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004).
    [CrossRef]
  7. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. G. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
    [CrossRef] [PubMed]
  8. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004).
    [CrossRef] [PubMed]
  9. H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
    [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
    [CrossRef] [PubMed]
  11. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9377-9384 (2006).
    [CrossRef] [PubMed]
  12. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  13. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004).
    [CrossRef] [PubMed]
  14. Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, and L. M. Tong, "Modeling rare-earth doped microfiber ring lasers," Opt. Express 14, 7073-7086 (2006).
    [CrossRef] [PubMed]
  15. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006).
    [CrossRef] [PubMed]
  16. J. Villatoro and D. Monzón-Hemández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005).
    [CrossRef] [PubMed]
  17. J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  18. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  19. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
    [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  21. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).
  22. T. Izawa and S. Sudo, Optical Fiber: Materials and Fabrication (Kluwer Academic, 1987).
  23. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
    [PubMed]
  24. D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.
  25. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  26. L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
    [CrossRef]
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phy. 114, 185-200 (1994).
    [CrossRef]
  28. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  29. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. Rusell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
    [CrossRef]
  30. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).
  31. F. Bilodeau, K. O. Hill, D. C. Johnson, and S. Faucher, "Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff," Opt. Lett. 12, 634-636 (1987).
    [CrossRef] [PubMed]

2006 (5)

2005 (6)

J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hemández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

2004 (5)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

2001 (1)

1994 (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phy. 114, 185-200 (1994).
[CrossRef]

1987 (1)

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

Asahara, Y.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Barrelet, C. J.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004).
[CrossRef]

Bellan, L. M.

H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phy. 114, 185-200 (1994).
[CrossRef]

Bermel, P.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Bilodeau, F.

Birks, T. A.

Bolger, J. A.

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Christodoulides, D. N.

Craighead, H. G.

H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
[CrossRef] [PubMed]

De Angelis, C.

Dimmick, T. E.

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Edel, J. B.

H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
[CrossRef] [PubMed]

Eggleton, B. J.

El-Ganainy, R.

Farjadpour, A.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Faucher, S.

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Franz, J. H.

J. H. Franz and V. K. Jain, Optical Communications Components and Systems (Narosa Publishing House, 2000).

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004).
[CrossRef]

Gu, P. F.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

He, J. L.

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Hill, K. O.

Hu, L. L.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).

R. G. Hunsperger, Photonic Devices and Systems (Marcel Dekker, 1994).

Ibanescu, M.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Iwanow, R.

Izawa, T.

T. Izawa and S. Sudo, Optical Fiber: Materials and Fabrication (Kluwer Academic, 1987).

Jain, V. K.

J. H. Franz and V. K. Jain, Optical Communications Components and Systems (Narosa Publishing House, 2000).

Jiang, X. S.

Joannopoulos, J. D.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Johnson, D. C.

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Johnson, S. G.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Kakarantzas, G.

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Le Roux, R.

Li, Y. H.

Lieber, C. M.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004).
[CrossRef]

Liu, H.

H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
[CrossRef] [PubMed]

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Liu, X.

Lizé, Y. K.

Locatelli, A.

Lou, J. Y.

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. G. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Mägi, E. C.

Mansuripur, M.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Modotto, D.

Monzón-Hemández, D.

Morandotti, R.

Pan, X. Y.

Pauzauskie, P. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pozzi, F.

Qiu, J. R.

Roundy, D.

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Rusell, P. S.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Shen, Y. G.

Sirbuly, D. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Siviloglou, G. A.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Sorel, M.

Stanley, C. R.

Stegeman, G. I.

Steinvurzel, P.

Sudo, S.

T. Izawa and S. Sudo, Optical Fiber: Materials and Fabrication (Kluwer Academic, 1987).

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004).
[CrossRef] [PubMed]

Suntsov, S.

Svacha, G. T.

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Ta'eed, V. G.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Tong, L. M.

Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, and L. M. Tong, "Modeling rare-earth doped microfiber ring lasers," Opt. Express 14, 7073-7086 (2006).
[CrossRef] [PubMed]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. G. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Vienne, G.

Villatoro, J.

Yamane, M.

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

Yang, P. D.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Yang, Q.

Ye, Z. Z.

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

Zhang, J. J.

Appl. Phys. Lett. (1)

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302-307 (1966).
[CrossRef]

J. Comput. Phy. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phy. 114, 185-200 (1994).
[CrossRef]

Nano. Lett. (2)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano. Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano. Lett. 4, 1981-1985 (2004).
[CrossRef]

Nanotechnology (1)

L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004).
[CrossRef] [PubMed]

Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004).
[CrossRef] [PubMed]

J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hemández, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005).
[CrossRef] [PubMed]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. G. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, and L. M. Tong, "Modeling rare-earth doped microfiber ring lasers," Opt. Express 14, 7073-7086 (2006).
[CrossRef] [PubMed]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9377-9384 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef] [PubMed]

Science (1)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Small (1)

H. Liu, J. B. Edel, L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots," Small 2, 495-499 (2006).
[CrossRef] [PubMed]

Other (10)

R. G. Hunsperger, Photonic Devices and Systems (Marcel Dekker, 1994).

J. H. Franz and V. K. Jain, Optical Communications Components and Systems (Narosa Publishing House, 2000).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

T. Izawa and S. Sudo, Optical Fiber: Materials and Fabrication (Kluwer Academic, 1987).

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, "The Meep FDTD package," http://ab-initio.mit.edu/meep/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Mathematic model for the coupling of two parallel nanowires.

Fig. 2
Fig. 2

Overlapping-length-dependent coupling efficiency of two identical nanowires with a 633 nm wavelength source. The nanowire diameters are (a) 350   nm , (b) 400   nm , and (c) 425   nm . The two polarizations of the source are denoted as E z (z polarized) and E y (y polarized), respectively.

Fig. 3
Fig. 3

Power maps of evanescent coupling between two parallel 350   nm diameter silica nanowires with overlapping length of (A) 0, (B) 2 .4   μm , and (C) 4 .8   μm . The source is z polarized with wavelength of 633   nm .

Fig. 4
Fig. 4

Power map of evanescent coupling between two parallel 250   nm silica nanowires with separation H = 0, the source is z polarized with wavelength of 633   nm , the overlapping length (L) is 6   μm .

Fig. 5
Fig. 5

Evanescent coupling behavior of two 350   nm diameter silica nanowires with a z-polarized 633   nm wavelength source. (a) H-dependent η, and (b) power maps with lateral separation (H) of 0 (point A), 70 (point B), and 210   nm (point C). The overlapping length (L) is 3 .6   μm .

Fig. 6
Fig. 6

Overlapping-length-dependent coupling efficiency of two silica nanowires with a z-polarized 633   nm wavelength source. Diameters of the nanowires are denoted as x y , in which x and y stand for the diameters of the input and output nanowires, respectively.

Fig. 7
Fig. 7

Power maps of evanescent coupling between a 200   nm diameter tellurite nanowire and a 450   nm diameter silica nanowire with a z-polarized 633   nm wavelength source. The overlapping length L = L T = 2.2   μm . (a) Coupling light from the tellurite nanowire to the silica nanowire. (b) Coupling light from the silica nanowire to the tellurite nanowire.

Tables (3)

Tables Icon

Table 1 Refractive Indices of Silica, Silicon, and Tellurite Nanowires

Tables Icon

Table 2 Minimum Transfer Length ( LT ), Maximum Coupling Efficiency ( η max ) , and Minimum Coupling Efficiency ( η min ) of Two Parallel Air-Clad Silica, Silicon, and Tellurite Nanowires with Separation H = 0

Tables Icon

Table 3 Calculated LT and η max of Evanescent Coupling between Silica and Tellurite Nanowires with H = 0

Metrics