Abstract

The dynamical characteristics of dual-period perfectly conducting gratings are explored. Gratings with several grooves (reflection) or slits (transmission) within each period are considered. A scalar approach is proposed to derive the general characteristics of the diffracted response. It was found that compound gratings can be designed to cancel as well as to intensify a given diffraction order. These preliminary estimations for finite gratings are validated by numerical examples for infinitely periodic reflection and transmission gratings with finite thickness, performed using an extension of the rigorous modal method to compound gratings, for both polarization cases.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  3. S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
    [CrossRef]
  4. Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
    [CrossRef]
  5. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  6. J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
    [CrossRef]
  7. G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
    [CrossRef]
  8. W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
    [CrossRef]
  9. A. Hibbins and J. R. Sambles, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
    [CrossRef]
  10. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
    [CrossRef]
  11. J.-F. Lepage and N. McCarthy, "Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results," Appl. Opt. 43, 3504-3512 (2004).
    [CrossRef] [PubMed]
  12. D. Crouse and P. Keshavareddy, "A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A 8, 175181 (2006).
    [CrossRef]
  13. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006).
    [CrossRef] [PubMed]
  14. D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron. Devices 52, 2365-2373 (2005).
    [CrossRef]
  15. V. V. Veremey and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antennas Propag. 46, 494-501 (1998).
    [CrossRef]
  16. D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
    [CrossRef]
  17. J. S. Uppal, P. K. Gupta, and R. G. Harrison, "Aperiodic ruling for the measurement of Gaussian laser beam diameters," Opt. Lett. 14, 683-685 (1989).
    [CrossRef] [PubMed]
  18. J. Sumaya-Martínez, O. Mata-Méndez, and F. Chavez-Rivas, "Rigorous theory of the diffraction of Gaussian beams by finite gratings: TE polarization," J. Opt. Soc. Am. A 20, 827-835 (2003).
    [CrossRef]
  19. O. Mata-Méndez, J. Avendano, and F. Chávez-Rivas, "Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization," J. Opt. Soc. Am. A 23, 1889-1896 (2006).
    [CrossRef]
  20. A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
    [CrossRef]
  21. S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
    [CrossRef]
  22. D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
    [CrossRef]
  23. D. C. Skigin and R. A. Depine, "Transmission resonances in metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]
    [CrossRef] [PubMed]
  24. D. C. Skigin and R. A. Depine, "Resonances on metallic compound transmission gratings with subwavelength wires and slits," Opt. Commun. 262, 270-275 (2006).
    [CrossRef]
  25. D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structures gratings with subwavelength slits" Phys. Rev. E 74, 046606 (2006).
  26. J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
    [CrossRef]
  27. R. A. Depine, "Surface impedance boundary conditions used to study light scattering from metallic surfaces," in Scattering in Volumes and Surfaces, M. Nieto-Vesperinas and J.C. Dainty, eds. (North-Holland, 1990), pp. 239-253.
  28. H. Lochbihler and R. Depine, "Diffraction from highly conducting wire gratings," Appl. Opt. 32, 3459-3465 (1993).
    [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

2006 (4)

D. Crouse and P. Keshavareddy, "A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A 8, 175181 (2006).
[CrossRef]

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

O. Mata-Méndez, J. Avendano, and F. Chávez-Rivas, "Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization," J. Opt. Soc. Am. A 23, 1889-1896 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Resonances on metallic compound transmission gratings with subwavelength wires and slits," Opt. Commun. 262, 270-275 (2006).
[CrossRef]

2005 (6)

D. C. Skigin and R. A. Depine, "Transmission resonances in metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]
[CrossRef] [PubMed]

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron. Devices 52, 2365-2373 (2005).
[CrossRef]

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

2004 (2)

J.-F. Lepage and N. McCarthy, "Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results," Appl. Opt. 43, 3504-3512 (2004).
[CrossRef] [PubMed]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

2003 (4)

Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. Sumaya-Martínez, O. Mata-Méndez, and F. Chavez-Rivas, "Rigorous theory of the diffraction of Gaussian beams by finite gratings: TE polarization," J. Opt. Soc. Am. A 20, 827-835 (2003).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
[CrossRef]

2002 (2)

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. Hibbins and J. R. Sambles, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

2001 (1)

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

2000 (1)

W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

1999 (1)

D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

1998 (2)

V. V. Veremey and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1993 (1)

1989 (1)

1977 (1)

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
[CrossRef]

Andrewartha, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
[CrossRef]

Arend, M.

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Avendano, J.

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Brehm, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Busch, K.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Cai, W. P.

Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Chavez-Rivas, F.

Chávez-Rivas, F.

Chen, L.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Choi, J.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Christ, A.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Crouse, D.

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, "A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A 8, 175181 (2006).
[CrossRef]

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron. Devices 52, 2365-2373 (2005).
[CrossRef]

Deng, J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Deng, X.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Depine, R.

Depine, R. A.

D. C. Skigin and R. A. Depine, "Resonances on metallic compound transmission gratings with subwavelength wires and slits," Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances in metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structures gratings with subwavelength slits" Phys. Rev. E 74, 046606 (2006).

R. A. Depine, "Surface impedance boundary conditions used to study light scattering from metallic surfaces," in Scattering in Volumes and Surfaces, M. Nieto-Vesperinas and J.C. Dainty, eds. (North-Holland, 1990), pp. 239-253.

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Fantino, A. N.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Fox, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
[CrossRef]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Göring, P.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Gösele, U.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Graener, H.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Graham, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Grosz, S. I.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Gupta, P. K.

Harrison, R. G.

Hibbins, A.

A. Hibbins and J. R. Sambles, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Kan, C. X.

Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Keshavareddy, P.

D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, "A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A 8, 175181 (2006).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Kuhl, J.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Lepage, J.-F.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, Z. S.

Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

Linden, S.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Liu, F.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Lochbihler, H.

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Mata-Méndez, O.

McCarthy, N.

Miclea, P.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Mittra, R.

D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Moreno, E.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Naber, A.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Neuberth, U.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Nielsch, K.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Nikolov, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Pereira, S.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Preist, T. W.

W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Rau, N.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

A. Hibbins and J. R. Sambles, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Sauer, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schneider, S.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Sciortino, P.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Seifert, G.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Skigin, D. C.

D. C. Skigin and R. A. Depine, "Resonances on metallic compound transmission gratings with subwavelength wires and slits," Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances in metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]
[CrossRef] [PubMed]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structures gratings with subwavelength slits" Phys. Rev. E 74, 046606 (2006).

Sumaya-Martínez, J.

Tan, W.-C.

W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Uppal, J. S.

Veremey, V. V.

D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Wang, J. J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

Wegener, M.

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

Wehrspohn, R. B.

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

Wilson, I. J.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Zou, J.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Z. S. Li, C. X. Kan, and W. P. Cai, "Tunable optical properties of nanostructured-gold mesoporous-silica assembly," Appl. Phys. Lett. 82, 1392-1394 (2003).
[CrossRef]

A. Hibbins and J. R. Sambles, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating," Appl. Phys. Lett. 86, 184103 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

V. V. Veremey and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

IEEE Trans. Electron. Devices (1)

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron. Devices 52, 2365-2373 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea, and R. B. Wehrspohn, "In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays," J. Appl. Phys. 97, 024308 (2005).
[CrossRef]

J. Opt. A (2)

D. Crouse and P. Keshavareddy, "A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A 8, 175181 (2006).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A 5, S129-S135 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Acta (1)

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1977).
[CrossRef]

Opt. Commun. (1)

D. C. Skigin and R. A. Depine, "Resonances on metallic compound transmission gratings with subwavelength wires and slits," Opt. Commun. 262, 270-275 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

S. Linden, N. Rau, U. Neuberth, A. Naber, M. Wegener, S. Pereira, K. Busch, A. Christ, and J. Kuhl, "Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs," Phys. Rev. B 71, 245119 (2005).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. W. Preist, "Double-period zero-order metal gratings as effective selective absorbers," Phys. Rev. B 61, 13177-13182 (2000).
[CrossRef]

Phys. Rev. E (2)

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

D. C. Skigin and R. A. Depine, "Transmission resonances in metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [Paper selected for publication in the Virtual Journal of Nanoscale Science and Technology 12, (2005).]
[CrossRef] [PubMed]

Other (3)

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structures gratings with subwavelength slits" Phys. Rev. E 74, 046606 (2006).

R. A. Depine, "Surface impedance boundary conditions used to study light scattering from metallic surfaces," in Scattering in Volumes and Surfaces, M. Nieto-Vesperinas and J.C. Dainty, eds. (North-Holland, 1990), pp. 239-253.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dual-period grating. (a) Configuration under study; (b) transmission function for three slits in the period.

Fig. 2
Fig. 2

Scalar approach of the response of a compound transmission grating for N = 10, J = 5, d * / d = 0.1 , ad = bd = 0.05, λ / d = 0.3 , and θ 0 = 0 ° . (a) Contributions of the J- and the N-dependent terms; (b) total transmitted intensity.

Fig. 3
Fig. 3

Scalar approach of the response of a compound transmission grating for N = 10, J = 2, d * / d = 1 / 3 , ad = bd = 0.1, λ / d = 0.3 , and θ 0 = 0 ° . (a) Contributions of the J- and the N-dependent terms; (b) total transmitted intensity.

Fig. 4
Fig. 4

Scheme of the simple and compound gratings.

Fig. 5
Fig. 5

(Color online) Efficiency of the 2 reflected order as a function of the incidence angle for gratings with ad = cd = 0.05 ( d * = 0.1 ) , hd = 1, λ / d = 0.3 , for several values of J. (a) s polarization; (b) p polarization.

Fig. 6
Fig. 6

(Color online) Efficiency of the 3 reflected order as a function of the incidence angle for gratings with J = 2, hd = 0.083, λ / d = 0.25 , for several values of d * (by keeping a = c). (a) s polarization; (b) p polarization.

Fig. 7
Fig. 7

(Color online) Efficiency of the 2 transmitted order as a function of the incidence angle for gratings with ad = cd = 0.05 ( d * = 0.1 ) , hd = 0.1, λ / d = 0.3 , for several values of J. (a) s polarization; (b) p polarization.

Fig. 8
Fig. 8

(Color online) Efficiency of the −3 transmitted order as a function of the incidence angle for gratings with J = 2, hd = 0.1, λ / d = 0.3 , for several values of d * (by keeping a = c). (a) s polarization; (b) p polarization.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E p = C aperture T ( x ) e i u x x d x ,
E p = n = 1 N e i u x n d d / 2 d / 2 T ( x ) e i u x x d x ,
E p = ( e i u x N d / 2 e i u x d / 2 ) ( sin N α sin α ) d / 2 d / 2 T ( x ) e i u x x d x ,
T ( x ) = rect ( x n d * a ) , n = 1 ,   …   ,   N ,
I p = | E p | 2 = I 0 ( sin N α sin α ) 2 ( sin J α * sin α * ) 2 ( sin β β ) 2 ,
sin θ sin θ 0 = m λ d , m Z .
sin θ sin θ 0 = p λ d * , p Z ,
sin θ sin θ 0 = q J λ d * , q / J Z .
q J λ d * = m λ d ,
m = q J d d * , q / J Z .
f z   inc ( x , y ) = exp [ i ( α 0 x β 0 y ) ] + n R n exp [ i ( α n x + β n y ) ] ,
f z   trans ( x , y ) = n T n exp [ i ( α n x β n y ) ] ,
f z j   slit ( x , y ) = m = 0 U m ( x x j ) { a m j cos [ v m y ] + b m j sin [ v m y ] } ,
U m ( x x j ) = { sin [ m π a ( x x j ) ] for   s   polarization cos [ m π a ( x x j ) ] for   p   polarization ,

Metrics