Abstract

We present what is believed to be a novel experimental method to measure the technological parameters (spectral response and quantum yield) of an infrared focal plane array. This method makes original use of a Fourier transform spectrometer, which allows us to simultaneously extract the spectral performances of all pixels from one single set of measurements. The methodology used and the principle of the experimental setup are detailed. A Fourier analysis is shown to provide various optogeometrical information on the detector microstructure. A demonstrator based on the HgCdTe technology was designed, and satisfactory experimental results were obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
    [CrossRef]
  2. G. Destefanis, "New generations of infrared detectors based on HgCdTe," C. R. Phys. 4, 1109-1120 (2003).
    [CrossRef]
  3. S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
    [CrossRef]
  4. N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).
  5. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  6. P. R. Griffiths and J. A. de Haselth, Fourier Transform Spectrometer Adapted to Low Light Level and High-Speed Operation (Wiley, 1986).
  7. N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
    [CrossRef]
  8. Y. Pochi, Optical Waves in Layered Media (Wiley, 1988).
  9. J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992).
    [CrossRef]
  10. A. Rogalski, "Heterostructure infrared photovoltaic detectors," Infrared Phys. Technol. 41, 213-238 (2000).
    [CrossRef]
  11. J. L. Tissot, "Advanced IR detector technology development at CEA/LETI," Infrared Phys. Technol. 43, 223-228 (2003).
    [CrossRef]
  12. A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron. 27, 59-210 (2003).
    [CrossRef]
  13. M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
    [PubMed]
  14. G. J. Hawkins, "Spectral characterisation of infrared optical materials and filters," Ph.D. dissertation (University of Reading, Department of Cybernetics, 1999).
  15. K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
    [CrossRef]
  16. A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
    [CrossRef]
  17. I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
    [CrossRef]

2005 (2)

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

2004 (2)

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

2003 (5)

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

G. Destefanis, "New generations of infrared detectors based on HgCdTe," C. R. Phys. 4, 1109-1120 (2003).
[CrossRef]

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

J. L. Tissot, "Advanced IR detector technology development at CEA/LETI," Infrared Phys. Technol. 43, 223-228 (2003).
[CrossRef]

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron. 27, 59-210 (2003).
[CrossRef]

2000 (1)

A. Rogalski, "Heterostructure infrared photovoltaic detectors," Infrared Phys. Technol. 41, 213-238 (2000).
[CrossRef]

1992 (1)

J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

Anderson, J. Y.

J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Benoit, G.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Castelein, P.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Chamonal, J. P.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

Chamonal, J.-P.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

Costard, E.

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

De Borniol, E.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

de Haselth, J. A.

P. R. Griffiths and J. A. de Haselth, Fourier Transform Spectrometer Adapted to Low Light Level and High-Speed Operation (Wiley, 1986).

De Rossi, A.

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

Debono, J. M.

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Deschamps, J.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).

Destefanis, G.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

G. Destefanis, "New generations of infrared detectors based on HgCdTe," C. R. Phys. 4, 1109-1120 (2003).
[CrossRef]

Di Mambro, E.

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

Durand, A.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

Fendler, M.

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Fink, Y.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Gravrand, O.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haselth, Fourier Transform Spectrometer Adapted to Low Light Level and High-Speed Operation (Wiley, 1986).

Guérineau, N.

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).

Hawkins, G. J.

G. J. Hawkins, "Spectral characterisation of infrared optical materials and filters," Ph.D. dissertation (University of Reading, Department of Cybernetics, 1999).

Krishnamurthy, S.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Le Rouzo, J.

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

Lee, D.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Louis, C.

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Lundqvist, L.

J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

Marion, F.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Martin, J. L.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

Mathieu, L.

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Million, A.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

Moazzami, K.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Phillips, J.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Pochi, Y.

Y. Pochi, Optical Waves in Layered Media (Wiley, 1988).

Primot, J.

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

Rambaud, P.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

Ribet, I.

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

Ribet-Mohamed, I.

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

Rogalski, A.

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron. 27, 59-210 (2003).
[CrossRef]

A. Rogalski, "Heterostructure infrared photovoltaic detectors," Infrared Phys. Technol. 41, 213-238 (2000).
[CrossRef]

Rommeluere, S.

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

Rommeluère, S.

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).

Tauvy, M.

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

Tissot, J. L.

J. L. Tissot, "Advanced IR detector technology development at CEA/LETI," Infrared Phys. Technol. 43, 223-228 (2003).
[CrossRef]

Tiwald, T.

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Volpert, M.

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

Zanatta, J. P.

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

C. R. Phys. (2)

G. Destefanis, "New generations of infrared detectors based on HgCdTe," C. R. Phys. 4, 1109-1120 (2003).
[CrossRef]

N. Guérineau, S. Rommeluere, E. Di Mambro, I. Ribet, and J. Primot, "New techniques of characterization," C. R. Phys. 4, 1175-1185 (2003).
[CrossRef]

Infrared Phys. Technol. (4)

A. Rogalski, "Heterostructure infrared photovoltaic detectors," Infrared Phys. Technol. 41, 213-238 (2000).
[CrossRef]

J. L. Tissot, "Advanced IR detector technology development at CEA/LETI," Infrared Phys. Technol. 43, 223-228 (2003).
[CrossRef]

A. De Rossi, E. Costard, N. Guérineau, and S. Rommeluère, "Effect of finite pixel size on optical coupling in QWIP's," Infrared Phys. Technol. 44, 325-330 (2003).
[CrossRef]

I. Ribet-Mohamed, J. Le Rouzo, S. Rommeluere, M. Tauvy, and N. Guérineau, "Advanced characterization of the radiometric performances of quantum well infrared photodetectors," Infrared Phys. Technol. 47, 119-131 (2005).
[CrossRef]

J. Appl. Phys. (1)

J. Y. Anderson and L. Lundqvist, "Grating-coupled quantum well infrared detectors: Theory and performances," J. Appl. Phys. 71, 3600-3610 (1992).
[CrossRef]

J. Electron. Mater. (1)

K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, "Detailed study of above bandgap optical absorption in HgCdTe," J. Electron. Mater. 34, 773-778 (2005).
[CrossRef]

Proc. SPIE (2)

F. Marion, P. Rambaud, J. P. Zanatta, P. Castelein, J. L. Martin, O. Gravrand, A. Durand, J. P. Chamonal, and G. Destefanis, "A megapixel MWIR focal plane array with a 15 μm pitch," in Detectors and Associated Signal Processing, J.-P. Chatard and P. N. Dennis, eds., Proc. SPIE 5251, 65-72 (2004).
[CrossRef]

S. Rommeluère, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, "Microspctrometer on a chip (MICROSPOC): first demonstration on a 320 × 240 LWIR HgCdTe focal plane array," in Infrared Technology and Applications, B. F. Andresen and G. F. Fulop, eds., Proc. SPIE 5406, 170-177 (2004).
[CrossRef]

Prog. Quantum Electron. (1)

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron. 27, 59-210 (2003).
[CrossRef]

Other (6)

M. Fendler, M. Volpert, F. Marion, L. Mathieu, J. M. Debono, P. Castelein, and C. Louis, "Wafer scale flip-chip technology for hgCdTe IRFPA," in Advanced Workshop on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (International Microelectronics and Packaging Society, 2000).
[PubMed]

G. J. Hawkins, "Spectral characterisation of infrared optical materials and filters," Ph.D. dissertation (University of Reading, Department of Cybernetics, 1999).

N. Guérineau, J. Deschamps, and S. Rommeluère, "Stationary Fourier transform spectrometer," U.S. patent application publication, US 2004/0239939 (2 December 2004).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

P. R. Griffiths and J. A. de Haselth, Fourier Transform Spectrometer Adapted to Low Light Level and High-Speed Operation (Wiley, 1986).

Y. Pochi, Optical Waves in Layered Media (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Test equipment for the measurements of hyperspectral cartographies.

Fig. 2
Fig. 2

Typical LPE-grown HgCdTe pixel structure. Because of the index gaps and the subsequent interface reflections, one can consider only three interacting waves within the pixel. The active zone is made of HgCdTe, and the substrate is CdZnTe.

Fig. 3
Fig. 3

Schematic of a micro-FT spectrometer integrated onto a photosensor based on the HgCdTe technology.

Fig. 4
Fig. 4

Quantum efficiency of the pixel (160, 120) from the 320 × 240 photosensor array (inset: the corresponding experimental interferogram).

Fig. 5
Fig. 5

Hyperspectral cartography at λ = 8.94   μm obtained with the FPA demonstrator.

Fig. 6
Fig. 6

Spectral and spatial dispersion of the quantum efficiency over the whole detector array. The experimental precision on the quantum efficiency η is typically 10%. The η min and η max values define an interval that includes 90% of the pixel population. The inset shows the extracted histogram at λ = 4   μm .

Fig. 7
Fig. 7

Fourier analysis of the pixel (160, 120) on the total spectral range from 1000 to 3300   cm 1 (the very low frequencies are filtered).

Fig. 8
Fig. 8

Two-dimensional cartographies of the substrate thickness e.

Fig. 9
Fig. 9

Two-dimensional geometrical aspect of the active layer thickness ε (the absolute values of ε cannot be given for confidentiality reasons).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η ( σ ) = η 0 I I ( σ ) I R ( σ ) I I ( σ ) = η 0 ( 1 I R ( σ ) I I ( σ ) ) ,
R t h ( σ ) = η ( σ ) e h c σ ,
E 1 ( σ , z ) = B 1 ( σ ) × E 0 e i k ( σ ) z ,
E 2 ( σ , z ) = B 2 ( σ ) e i × 2 π σ × 2 δ e ( σ ) × E 0 e i k ( σ ) z ,
E 3 ( σ , z ) = B 3 ( σ ) e i × 2 π σ × 2 [ δ e ( σ ) + δ ε ( σ ) ] × E 0 e i k ( σ ) z ,
B 1 ( σ ) = r 01 ( σ ) ,
B 2 ( σ ) = t 01 r 12 t 10 ( σ ) ,
B 3 ( σ ) = t 01 t 12 t 10 t 21 r 23 ( σ ) × e 2 β ( σ ) ε ,
η ( σ ) = η 0 ( 1 I R ( σ ) I I ( σ ) ) = η 0 ( 1 | q E q ( σ ) | 2 | E 0 | 2 ) .    
η ( σ ) = η 0 × { 1 p = 0 1 m = 0 1 D p m ( σ ) cos [ 4 π σ ( p δ e ( σ ) + m δ ε ( σ ) ) ] } ,
I i j b b = Γ i j A Ω i j d L b b ( T ) R i j ( σ ) ,

Metrics