Abstract

Optical biopsy has been shown to discriminate between normal and diseased tissue with high sensitivity and specificity. Fiber-optic probe-based spectroscopy systems do not provide the necessary spatial information to guide therapy effectively, ultimately requiring a transition from probe-based spectroscopy to spectral imaging. The effect of such a transition on fluorescence and diffuse reflectance line shape is investigated. Inherent differences in spectral line shape between spectroscopy and imaging are characterized and many of these differences may be attributed to a shift in illumination–collection geometry between the two systems. Sensitivity of the line-shape disparity is characterized with respect to changes in sample absorption and scattering as well as to changes in various parameters of the fiber-optic probe design (e.g., fiber diameter, beam steering). Differences in spectral line shape are described in terms of the relative relationship between the light diffusion within the tissue and the distribution of source–detector separation distances for the probe-based and imaging illumination–collection geometries. Monte Carlo simulation is used to determine fiber configurations that minimize the line-shape disparity between the two systems. In conclusion, we predict that fiber-optic probe designs that mimic a spectral imaging geometry and spectral imaging systems designed to emulate a probe-based geometry will be difficult to implement, pointing toward a posteriori correction for illumination–collection geometry to reconcile imaging and probe-based spectral line shapes or independent evaluation of tissue discrimination accuracy for probe-based and spectral imaging systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef] [PubMed]
  2. A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996).
    [CrossRef]
  3. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
    [CrossRef] [PubMed]
  4. W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
    [CrossRef]
  5. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
    [CrossRef] [PubMed]
  6. W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
    [CrossRef] [PubMed]
  7. S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
    [CrossRef] [PubMed]
  8. M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998).
    [PubMed]
  9. A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
    [CrossRef] [PubMed]
  10. M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
    [CrossRef] [PubMed]
  11. S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999).
    [CrossRef]
  12. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
    [CrossRef] [PubMed]
  13. W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
    [CrossRef] [PubMed]
  14. J. Wu, F. Partovi, M. S. Field, and R. P. Rava, "Diffuse reflectance from turbid media--an analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993).
    [CrossRef] [PubMed]
  15. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
    [CrossRef] [PubMed]
  16. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
    [CrossRef]
  17. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Optical properties effects upon the collection efficiency of optical fibers in different probe configurations," IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003).
    [CrossRef]
  18. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
    [CrossRef] [PubMed]
  19. Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
    [CrossRef] [PubMed]
  20. C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
    [CrossRef] [PubMed]
  21. J. M. Schmitt and G. Kumar, "Spectral distortions in near-infrared spectroscopy of turbid materials," Appl. Spectrosc. 50, 1066-1073 (1996).
    [CrossRef]
  22. G. Kumar and J. M. Schmitt, "Optimal probe geometry for near-infrared spectroscopy of biological tissue," Appl. Opt. 36, 2286-2293 (1997).
    [CrossRef] [PubMed]
  23. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
    [CrossRef] [PubMed]
  24. T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
    [CrossRef] [PubMed]
  25. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
    [CrossRef] [PubMed]
  26. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
    [CrossRef] [PubMed]
  27. C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
    [CrossRef] [PubMed]
  28. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
    [CrossRef] [PubMed]
  29. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993).
    [CrossRef] [PubMed]
  30. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
    [CrossRef] [PubMed]
  31. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of instrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
    [CrossRef] [PubMed]
  32. Q. G. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
    [CrossRef]
  33. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
    [CrossRef]
  34. R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
    [CrossRef] [PubMed]
  35. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
    [CrossRef] [PubMed]
  36. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, "Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998).
    [CrossRef]
  37. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005).
    [CrossRef] [PubMed]
  38. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published).
    [PubMed]
  39. S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006).
    [CrossRef]
  40. S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
    [CrossRef] [PubMed]
  41. S. Prahl, M. van Gemert, and A. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).
    [CrossRef] [PubMed]
  42. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993).
    [CrossRef] [PubMed]
  43. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, "Study of fiber-optic probes for in vivo medical Raman spectroscopy," Appl. Spectrosc. 53, 619-627 (1999).
    [CrossRef]
  44. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
    [CrossRef] [PubMed]
  45. S. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. Welch and M. v. Gemert, eds. (Plenum, 1995), pp. 73-100.
  46. W. F. Cheong, "Summary of optical properties," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 275-304.
  47. B. L. McClain, J. Ma, and D. Ben-Amotz, "Optical absorption and fluorescence spectral imaging using fiber bundle image compression," Appl. Spectrosc. 53, 1118-1122 (1999).
    [CrossRef]
  48. N. Ghosh, S. K. Majumder, and P. K. Gupta, "Polarized fluorescence spectroscopy of human tissues," Opt. Lett. 27, 2007-2009 (2002).
    [CrossRef]
  49. Y. Liu, Y. L. Kim, and V. Backman, "Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating," Appl. Opt. 44, 2288-2299 (2005).
    [CrossRef] [PubMed]
  50. K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
    [CrossRef] [PubMed]
  51. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
    [CrossRef] [PubMed]
  52. N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
    [CrossRef] [PubMed]
  53. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, "Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy," Appl. Spectrosc. 59, 393-400 (2005).
    [CrossRef] [PubMed]

2006

S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006).
[CrossRef]

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
[CrossRef] [PubMed]

2005

2004

T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

2003

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Optical properties effects upon the collection efficiency of optical fibers in different probe configurations," IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003).
[CrossRef]

Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
[CrossRef] [PubMed]

2002

2001

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
[CrossRef]

2000

Q. G. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

1999

1998

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, "Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998).
[CrossRef]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998).
[PubMed]

1997

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

G. Kumar and J. M. Schmitt, "Optimal probe geometry for near-infrared spectroscopy of biological tissue," Appl. Opt. 36, 2286-2293 (1997).
[CrossRef] [PubMed]

1996

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of instrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

J. M. Schmitt and G. Kumar, "Spectral distortions in near-infrared spectroscopy of turbid materials," Appl. Spectrosc. 50, 1066-1073 (1996).
[CrossRef]

1994

1993

1989

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
[CrossRef] [PubMed]

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Amidei, C.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arifler, D.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Avrillier, S.

Backman, V.

Bargo, P. R.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Optical properties effects upon the collection efficiency of optical fibers in different probe configurations," IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003).
[CrossRef]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
[CrossRef] [PubMed]

Beek, J. F.

Ben-Amotz, D.

Bengtsson, D.

Bennett, C. L.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Bevilacqua, F.

Bise, K.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

Breslin, T. M.

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Chamberlain, M. C.

M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998).
[PubMed]

Chan, E.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Chance, B.

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

Chang, S. K.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Chen, J.

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, "Summary of optical properties," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 275-304.

Clark, I. P.

Cothren, R.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Criswell, G.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Depeursinge, C.

Dohrmann, G.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Draper, E. R. C.

Drezek, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
[CrossRef] [PubMed]

Durkin, A. J.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
[CrossRef] [PubMed]

Ediger, M. N.

El-Sadin, S.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Erickson, R. K.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Ettori, D.

Everall, N.

Feld, M. S.

Ferson, D. Z.

S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999).
[CrossRef]

Field, M. S.

Finney, W. F.

Follen, M.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Fritsch, C.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Gall, J. A.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Gardner, C.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Gardner, C. M.

Gebhart, S. C.

S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006).
[CrossRef]

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
[CrossRef] [PubMed]

S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published).
[PubMed]

Gelebart, B.

Georgakoudi, I.

Ghosh, N.

Goetz, A. E.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Goetz, C.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Goodship, A. E.

Gossage, K.

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

Goy, B. W.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Gross, J. D.

Gupta, P. K.

Hayes, G.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Hekmatpanah, J.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Jacques, S.

S. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. Welch and M. v. Gemert, eds. (Plenum, 1995), pp. 73-100.

Jacques, S. L.

Jaikumar, S.

Jansen, E. D.

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Johnson, M.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

Johnson, M. D.

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Keijzer, M.

Kiefmann, R.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Kim, Y. L.

Kincaid, P.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Kittrell, C.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Kolubayev, T.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Kormanik, P. A.

M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998).
[PubMed]

Kowalczuk, A.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Kramer, J. R.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Krauss, S.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Krishnasamy, S.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Kumar, G.

Lee, S. P.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Lin, W. C.

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Lin, W.-C.

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Liu, Q.

C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef] [PubMed]

Liu, Y.

Ma, J.

Macdonald, R. L.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006).
[CrossRef]

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
[CrossRef] [PubMed]

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published).
[PubMed]

Majumder, S. K.

Marple, E.

Marquet, P.

Masters, G.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Matchette, L. S.

T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
[CrossRef] [PubMed]

Matousek, P.

McClain, B. L.

Mehta, A.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Morgan, S. P.

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

Morris, M. D.

Motamedi, M.

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

Mullan, S. F.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Muller, M. G.

Mundt, A. J.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Myakov, A.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

Nieman, L.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

Nishioka, N. S.

Novotny, A.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

Palmer, G. M.

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Park, S. H.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Parker, A. W.

Partovi, F.

Pfefer, J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Pfefer, T. J.

T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
[CrossRef] [PubMed]

Pickering, J. W.

Piguet, D.

Pitter, M. C.

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

Prahl, S.

Prahl, S. A.

Ramanujam, N.

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
[CrossRef] [PubMed]

Ratliff, N. B.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Rava, R. P.

Reulen, H. J.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Richards-Kortum, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
[CrossRef] [PubMed]

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

Ross, A. M.

Sawaya, R.

S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999).
[CrossRef]

Schmitt, J. M.

Schomacker, K. T.

Selch, M. T.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Shim, M. G.

Sokolov, K.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

Stepp, H.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

Stocker, S.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Stockford, I. M.

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

Stummer, W.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Svensson, J.

Swartling, J.

Sweeney, P.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Terike, K.

Thompson, R. C.

S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published).
[PubMed]

Tinet, E.

Toms, S. A.

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999).
[CrossRef]

Towrie, M.

Tromberg, B. J.

Tualle, J. M.

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

van Gemert, M.

Vangemert, M. J. C.

Vanwieringen, N.

Vokes, E. E.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Wach, M.

Wagner, S.

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

Wang, L.

S. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. Welch and M. v. Gemert, eds. (Plenum, 1995), pp. 73-100.

Warren, S.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Weil, R. J.

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Weir, B. K.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Welch, A.

Welch, A. J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of instrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
[CrossRef] [PubMed]

Wicky, L.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

Wilke, J. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

Withers, H. R.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Wollman, R. L.

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

Wu, J.

Xu, F. S.

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Yong, K. Y.

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

Zhang, Q. G.

Zhu, C. F.

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Am. Heart. J.

R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989).
[CrossRef] [PubMed]

Am. J. Clin. Oncol.

M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Appl. Opt.

S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published).
[PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993).
[CrossRef] [PubMed]

S. Prahl, M. van Gemert, and A. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).
[CrossRef] [PubMed]

J. Wu, F. Partovi, M. S. Field, and R. P. Rava, "Diffuse reflectance from turbid media--an analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994).
[CrossRef] [PubMed]

G. Kumar and J. M. Schmitt, "Optimal probe geometry for near-infrared spectroscopy of biological tissue," Appl. Opt. 36, 2286-2293 (1997).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, "Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998).
[CrossRef]

C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of instrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
[CrossRef]

M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
[CrossRef] [PubMed]

J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005).
[CrossRef] [PubMed]

Y. Liu, Y. L. Kim, and V. Backman, "Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating," Appl. Opt. 44, 2288-2299 (2005).
[CrossRef] [PubMed]

Appl. Spectrosc.

IEEE J. Sel. Top. Quantum Electron.

W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001).
[CrossRef]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Optical properties effects upon the collection efficiency of optical fibers in different probe configurations," IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng.

N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt.

Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef] [PubMed]

C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

J. Neuro-Oncol.

S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999).
[CrossRef]

J. Neurosurg.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000).
[CrossRef] [PubMed]

Lasers Surg. Med.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput.

T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004).
[CrossRef] [PubMed]

Neoplasia

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Neurosurgery

W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998).
[CrossRef] [PubMed]

A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997).
[CrossRef] [PubMed]

S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Photochem. Photobiol.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006).
[CrossRef] [PubMed]

Proc. SPIE

S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006).
[CrossRef]

West. J. Med.

M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998).
[PubMed]

Other

S. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. Welch and M. v. Gemert, eds. (Plenum, 1995), pp. 73-100.

W. F. Cheong, "Summary of optical properties," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 275-304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illumination–collection geometries for typical probe-based spectroscopy and noncontact spectral imaging systems. (a) Contact-based fiber-optic probe with a single illumination fiber and fibers polished normally. (b) Spectral imaging system with noncontact illumination and collection. (c) Cross section of the probe–tissue interface for a six-around-one probe configuration with a central illumination fiber and six surrounding collection fibers relative to the light distribution in the tissue. (d) Spectral imaging field of view and individual pixels relative to the illumination spot size and subsequent light distribution.

Fig. 2
Fig. 2

Schematic of probe-based spectroscopy measurement with an imaging illumination–collection geometry.

Fig. 3
Fig. 3

Demonstration of line-shape disparity between probe-based spectroscopy and spectral imaging. (a) Diffuse reflectance spectra from gray matter phantom. (b) Fluorescence spectra from gray matter phantom. (c) Diffuse reflectance spectra from white matter phantom. (d) Fluorescence spectra from white matter phantom.

Fig. 4
Fig. 4

Effect of sample absorption on line-shape disparity between probe-based spectroscopy and spectral imaging. (a) Probe-based diffuse reflectance spectra. (b) Probe-based fluorescence spectra. (c) Imaging diffuse reflectance spectra. (d) Imaging fluorescence spectra.

Fig. 5
Fig. 5

Effect of sample reduced scattering on line-shape disparity between probe-based spectroscopy and spectral imaging. (a) Probe-based diffuse reflectance spectra. (b) Probe-based fluorescence spectra. (c) Imaging diffuse reflectance spectra. (d) Imaging fluorescence spectra.

Fig. 6
Fig. 6

Effect of beam-steered fibers on line shape of probe-based diffuse reflectance spectra from variable absorption phantoms: (a) without beam steering, (b) with beam steering.

Fig. 7
Fig. 7

Effect of fiber diameter and using the illumination fiber for collection on Monte Carlo predicted line shape of probe-based diffuse reflectance spectra from variable absorption phantoms: (a) 110μm diameter fibers (core + cladding), (b) 220μm diameter fibers, (c) 330μm diameter fibers, (d) 330μm diameter fibers with illumination fiber used for collection.

Fig. 8
Fig. 8

Ideal fiber configuration to minimize the disparity between imaging and probe-based diffuse reflectance line shapes from variable scattering phantoms: (a) ideal fiber configuration, (b) Monte Carlo imaging spectra and probe-based spectra for R=165μm , N=1 , and various rMAX values for 0.5mL phantom, (c) Monte Carlo imaging and probe-based spectra for R=165μm , N=1 , and rMAX=5mm for variable scattering phantoms, (d) Monte Carlo imaging spectra and probe-based spectra for R=165μm , N=1 , and various rMAX values for 0.5mL phantom with absorption equal to 133% of μa value in (b).

Fig. 9
Fig. 9

Normalized impulse response and SDSD distributions for diffuse reflectance. Impulse responses are plotted for four combinations of high and low scattering and absorption ( μs=3 and 165cm1 , μa=0.1 , and 50cm1 ). Each impulse response was normalized to a peak of one. Imaging and spectroscopy SDSD distributions were calculated for the illumination–collection geometries for the experimental measurements in Figs. 4 and 5, with the imaging distribution for a 50μm pixel at the center of a 25mm diameter excitation spot.

Tables (1)

Tables Icon

Table 1 Phantoms to Investigate the Sensitivity of the Line-Shape Disparity to Changes in Optical Properties

Equations (95)

Equations on this page are rendered with MathJax. Learn more.

(d=16mm)
μa=01.0mm−1
μs=0.52.0
mm1
(d=01  mm)
d=300μm
NA=0 .22
337  nm
120μJ
20  Hz
6.5  W
f/3.5
25  mm×25  mm
180  mm
500  W
340  nm
200  W
365  nm
50  mm
720  nm
200  ms
10  nm
10  nm
25  mm
50  mm
NA=0 .22
11   mm
50   mm
50  μm
337   nm
720   nm
d=300μm
NA=0 .22
(μa,μs)
330  μm
(400600  nm)
(600720  nm)
720  nm
(Δr)
2πrΔr
(rMAX)
15  mm
rMAX=5   mm
10  nm
10  nm
400  nm
35  nm
720  nm
(1015  nm)
(460  nm)
p(s)=μt  exp(μts)
μt=(μa+μs)
μt
μa
μt
μs
μs
μt
μt
1020  mm
rMAX=10  mm
1020  mm
rMAX
(rMAX)
Number   of   Collection   Fibers=N2  FLOOR(rMAX2R)×[FLOOR(rMAX2R)+1],
330μm
N=1
rMAX=10  mm
110μm
(rMAX)
(660μm)
1020mm
20mm
110μm
220μm
330μm
330μm
R=165μm
N=1
rMAX
0.5mL
R=165μm
N=1
rMAX=5mm
R=165μm
N=1
rMAX
0.5mL
μa
μs=3
165cm1
μa=0.1
50cm1
50μm
25mm

Metrics